QTM 347 Machine Learning

Lecture 9: Subset selection

Ruoxuan Xiong Suggested reading: ISL Chapter 6

• Best subset selection

Motivation

- In many modern datasets, the **dimension** of feature vector is **much larger than** the **number of examples** in the training set
 - High-dimensional datasets
 - A canonical example is *biological gene expressions*: $p \gg n$

Features/Input
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_p \end{bmatrix} \xrightarrow{\text{--- gene 1}} y$$
 Label/Output

• Overfitting is prevalent when learning from *high-dimensional datasets*

Subset selection

• Step 1: For each k, select a subset of k predictors from the total p predictors

• There are
$$\binom{p}{k} = \frac{p!}{k!(p-k)!}$$
 possible ways of choosing k predictors

- Choose the subset with the smallest residual sum of squares (or whichever loss we decide to use)
- Step 2: Select the optimal *k*

Example

- Credit card data set
 - Predict whether customers default on their credit card debt
 - Predictors (11 predictors in total)
 - Income: Income in \$1,000's
 - Limit: Credit limit
 - Rating: Credit rating
 - Cards: Number of credit cards
 - Age: Age in years
 - Education: Number of years of education
 - Gender: A factor with levels Male and Female
 - Student: A factor with levels No and Yes indicating the individual was a student
 - Married: A factor with levels No and Yes indicating whether the individual was married
 - Ethnicity: A factor with levels African American, Asian, and Caucasian indicating the individual's ethnicity
 - Balance: Average credit card balance in \$

Example

• Best model for a given number of predictors

- Both residual sum of squares and R^2 improve as we increase k
- We do not want select the model with maximum number of predictors

Objective in subset selection

- Select the optimal k and the set of k predictors to minimize the test error
- Cross-validation is one approach to directly estimate the test error
- Alternative criteria to indirectly estimate the test error by making an adjustment to the training error
 - Less expensive to compute
 - Computational cost matters in subset selection since we are looking at $\binom{p}{k}$ many combinations of predictors

Three alternative criteria

• Akaike Information Criterion (AIC)

• Bayesian Information Criterion (BIC)

• Adjusted R^2 statistic

Model selection criteria I: AIC

$$C_p = \frac{1}{n} (\text{RSS} + 2k\hat{\sigma}^2)$$

- RSS = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$, where \hat{Y}_i is predicted label. MSE_{training} = $\frac{1}{n}$ RSS
- $\hat{\sigma}^2$ is an estimate of the variance of the "error" using the full model containing all predictors
- *k* is the number of predictors in the model
- Interpretation
 - Adds a penalty of $2k\hat{\sigma}^2$
 - Penalty increases as k---number of predictors in the model---increases

Model selection criteria II: BIC

```
\frac{1}{n}(\text{RSS} + \log(n)\,k\hat{\sigma}^2)
```

- $\hat{\sigma}^2$ is an estimate of the variance of the "error"
- *k* is the number of predictors in the model

• Interpretation

- Adds a penalty of $\log(n) k \hat{\sigma}^2$
- When log(n) > 2 (or n > 7), BIC places a heavier penalty on having more predictors than AIC

Model selection criteria III: Adjusted R^2 statistic

$$R_{\text{adj}}^2 = 1 - \frac{\frac{\text{RSS}}{n-k-1}}{\frac{\text{TSS}}{n-1}}$$

- RSS = $\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$
- TSS = $\sum_{i=1}^{n} (Y_i \overline{Y})^2$
- $R^2 = 1 \frac{RSS}{TSS}$
- R_{adj}^2 may not always increase with k

• Interpretation

• Once all of the "correct" variables have been included, adding additional "noise" variables will lead to only a *small* decrease in RSS

Comparison between model selection criteria

- Example: Best subset selection for the credit card data set
- Criteria vs. number of predictors:

- BIC selects a model with the smallest number of predictors
- Recall that when log(n) > 2 or n > 7, BIC places a heavier penalty on models with more predictors than AIC

Comparison with cross-validation

- Recall: In k-fold cross validation, estimate standard error for test error
 - One standard error rule: simplest model within one standard error from lowest
 - Select a 3- or 4-variable model according to this rule

Cross-validation vs. Evaluation criteria

- Cross-validation is computationally expansive
 - Provides a **direct** estimate of the test error
 - Make fewer assumptions on the true model

- These evaluation criteria (AIC, BIC, adjusted *R*²) are computationally cheap
 - Only works under certain assumptions on the true model

Discussions

- Best subset selection has two problems:
 - Computationally expensive: fit over 2^p models!
 - Too many possibilities increases chances of overfitting
 - Selected model has *high variance*
- Possible solution: restrict search space
- Next: Stepwise selection methods

