#### QTM 347 Machine Learning

#### Lecture 19: Midterm review

Ruoxuan Xiong Based on Lectures 1-18



#### Announcements

- The midterm will be available from 4/9 12:00 AM until 4/12 11:59 PM at Quizzes on Canvas
- You can choose any 24 hours in between to finish it
- Once you decide to take it, you can open the quiz and the time starts to count
- Once you finish (within 24 hours), upload your solution (two files: one html and one ipynb file) and click submit quiz on Canvas



### Midterm

- Cover the material from Lectures 1-18
- Problems are similar to those in homework assignments
- A combination of conceptual and coding questions
- You need to finish it independently
- Open book, open notes. Not allowed to use chatGPT
- You cannot talk to anyone about the exam until 4/12 11:59 PM



#### This course





# Supervised vs. unsupervised machine learning

- Supervised machine learning (main focus)
  - Data:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 
    - $x_i$ : predictors
    - *y<sub>i</sub>*: response
  - Task: Fit a model that relates response to predictors
  - E.g., linear regression, logistic regression, KNN, LDA/QDA, tree-based methods

- Unsupervised machine learning
  - Data:  $x_1, x_2, \dots, x_n$
  - Task: Understand the relationships between variables/observations
  - E.g., principal component analysis



#### Supervised machine learning: Regression vs. classification problems

- Suppose we observe n data points:  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ 
  - $\bar{x}_i$ : predictors
  - *y<sub>i</sub>*: response
- Supervised machine learning finds a function f that maps X to Y
- Regression problem
  - Find a function f that maps  $Y = f(X) + \varepsilon$ , with  $E[\varepsilon] = 0$
  - Example: Predict sales of a product (Y) in 200 markets using the expenditure of three media (X: TV, radio, and newspaper)
- Classification problem
  - Estimate P(Y|X): conditional distribution of Y given X
  - Example: Predict whether a customer defaults (binary Y) using income, credit card balance, student status, etc.



## Training data, training error, test data, test error

- Training data: the observations,  $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ , that we use estimate f (f could be linear, quadratic, etc)
- Training error

  - Regression problem:  $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{f}(x_i))^2$  Classification problem: classification error  $\frac{1}{n} \sum_{i=1}^{n} 1(y_i \neq \hat{y}_i)$
- Test data: the data,  $(x'_1, y'_1), (x'_2, y'_2), \dots, (x'_m, y'_m)$ , that are previous unseen and not used to fit f
- Test error
  - Regression problem: MSE = <sup>1</sup>/<sub>m</sub>Σ<sup>m</sup><sub>i=1</sub>(y'<sub>i</sub> f̂(x'<sub>i</sub>))<sup>2</sup>
    Classification problem: classification error <sup>1</sup>/<sub>m</sub>Σ<sup>m</sup><sub>i=1</sub>1(y'<sub>i</sub> ≠ ŷ'<sub>i</sub>)



# Our goal and challenge in supervised machine learning

- Our goal in supervised learning is to minimize the (test) prediction error
- Regression problem
  - Typically, minimize test Mean Squared Error (MSE)
- Classification problem
  - Typically, minimize test 0-1 loss, Gini index, entropy loss
- A low training MSE/classification error does not imply a low test MSE / classification error ...



### MSE varies with model flexibility



4/7/2025

### Bias-variance decomposition of MSE

• The MSE at a test point  $x_0$  can be decomposed as

$$MSE(x_0) = bias^2 \left( \hat{f}(x_0) \right) + var \left( \hat{f}(x_0) \right) + V_{Y|X}[Y \mid X = x_0]$$

Reducible error

Irreducible error

• bias 
$$(\hat{f}(x_0)) = f(x_0) - E_{\mathcal{D}}[\hat{f}(x_0)]$$

• This measures the deviation of the average prediction  $\hat{f}(x_0)$  from the truth  $f(x_0)$ 

• 
$$\operatorname{var}\left(\hat{f}(x_0)\right) = E_{\mathcal{D}}\left[\left(\hat{f}(x_0) - E_{\mathcal{D}}[\hat{f}(x_0)]\right)^2\right]$$

• How much the estimate of  $\hat{f}$  at  $x_0$  changes when we sample new training data

• If 
$$Y = f(X) + \varepsilon$$
 with  $E[\varepsilon] = 0$  and  $V[\varepsilon] = \sigma_{\varepsilon}^2$ , then  $V_{Y|X}[Y \mid X = x_0] = \sigma_{\varepsilon}^2$ 



# Example of bias-variance decomposition of MSE

<sup>-</sup>redictions

- Suppose we would like to train a model to learn the true regression function  $f(x) = x^2$  (x is a scalar)
- We use
  - A constant function:  $\hat{f}_0(x) = \hat{\beta}_0$
  - A linear function:  $\hat{f}_1(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1$
  - A quadratic function:  $\hat{f}_2(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1 + x^2 \cdot \hat{\beta}_2$
  - A ninth degree polynomial function:  $\hat{f}_9(x) = \hat{\beta}_0 + x \cdot \hat{\beta}_1 + \dots + x^9 \cdot \hat{\beta}_9$

i = 1i =

Simulated Predictions for Polynomial Models





# In practice, use data splitting strategy

- Split the data into the training and test sets
- Choose parameters by cross-validation on the training data
  - E.g.,  $\lambda$  in lasso/ridge,  $\lambda$  and  $\alpha$  in Elastic net
- Fit various models on the training set using the optimal parameters selected by cross-validation
- Evaluate/select models on the test set
- Cross validation
  - k-fold cross-validation
    - 1. Split the data into k subsets or *folds*
    - 2. For every  $i = 1, \dots, k$ :
      - 1. train the model on every fold except the ith fold
      - 2. compute the test error on the *i*th fold
    - 3. Average the test errors
  - Leave one out cross-validation (*n*-fold cross validation)



HW 1 Problem 4



# K-nearest neighbors

- K-nearest neighbors: A simple and well-known nonparametric method
  - Given a value for K and a prediction point  $x_0$
  - $N_K(x_0)$  represents the set of K training observations that are closest to  $x_0$
  - Regression problem
    - $\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in N_K(x_0)} y_i$
    - In Python, use KNeighborsRegressor() in sklearn.neighbors
  - Classification problem
    - $\hat{P}(Y = j | X = x_0) = \frac{1}{K} \sum_{x_i \in N_K(x_0)} I(y_i = j)$
    - In Python, use KNeighborsClassifier() in sklearn.neighbors
  - Bias-variance tradeoff for the optimal K
    - Large K, less flexible, large bias, small variance
    - Small K, more flexible, small bias, large variance





#### Classification problem: Discriminative vs. generative methods

- Discriminative methods
  - Directly model P(Y = k | X = x) and classify
  - E.g., logistic regression
  - In Python, use GLM() in statsmodels.api
- Generative methods
  - 1. Model the joint probability p(x, y)
  - 2. Assume some distribution for conditional distribution of X given Y = k, P(X = x | Y = k)
  - 3. Bayes theorem is applied to obtain P(Y = k | X = x) and classify
  - E.g., linear discriminant analysis (LDA), quadratic discriminant analysis (QDA)
  - In Python, use LinearDiscriminantAnalysis() and QuadraticDiscriminantAnalysis() in sklearn.discriminant\_analysis



## LDA and QDA

#### • To estimate P(Y|X)

- 1. Estimate P(X = x | Y = k) and P(Y = k)
  - a. P(X = x | Y = k)I. LDA: Assume  $P(X = x | Y = k) = N(\mu_k, \Sigma)$ II. QDA: Assume  $P(X = x | Y = k) = N(\mu_k, \Sigma_k)$ 
    - III. Estimate  $\mu_k$  and  $\Sigma$  (or  $\Sigma_k$ )
  - b. P(Y = k)
    - a. Estimated the fraction of training samples of class k

2. Apply Bayesian rule 
$$P(Y = k | X = x) = \frac{P(X = x | Y = k)P(Y = k)}{\sum_{j} P(X = x | Y = j)P(Y = j)}$$



HW 1 Problem 4



### Classification problem: Bayes classifier

- Bayes classifier (for both discriminative vs. generative methods)
  - $\hat{y}_i = \operatorname{argmax}_j P(Y = j | X = x_i)$
  - Assign unit i the class with largest probability



## Regression problem

- Suppose a linear model  $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$
- If p is small compared to n,
  - We can estimate  $\beta_0, \cdots, \beta_p$  by linear regression, that minimizes the RSS
    - RSS =  $\sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2} \dots \hat{\beta}_p x_{ip})^2$
- If *p* is large compared to *n*, use model selection or regularization methods



### Model selection methods

- Select a small subset of predictors (whether intercept is included)
  - Best subset selection
    - Akaike Information Criterion (AIC or  $C_p$ ):  $C_p = \frac{1}{n} (RSS + 2k\hat{\sigma}^2)$ 
      - $\hat{\sigma}^2$  is an estimate of the irreducible error, and k is the number of predictors in the model
    - Bayesian Information Criterion (BIC): BIC =  $\frac{1}{n}$  (RSS + log(n)  $k\hat{\sigma}^2$ )
    - Adjusted  $R^2$
  - Stepwise selection
    - Forward selection: Start with a model with no predictors, add predictors to the model one-ata-time
    - Backward selection: Start with a model with p predictors, remove the least useful predictor one-at-a-time
    - See the notebook (lecture 11 subset selection.ipynb)

HW 2 Problem 3



## Shrinkage methods

- Linear regression minimizes RSS
  - RSS =  $\sum_{i=1}^{n} (y_i \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i \hat{\beta}_0 \hat{\beta}_1 x_{i1} \hat{\beta}_2 x_{i2} \dots \hat{\beta}_p x_{ip})^2$
- Ridge regression minimizes RSS+  $\lambda \sum_{j=1}^{p} \beta_{j}^{2}$ 
  - $\lambda \sum_{j=1}^{p} \beta_j^2$ : Shrinkage penalty, small if  $\beta_1, \dots, \beta_p$  are close to zero
  - In Python, use ElasticNet() with l1\_ratio=0 in sklearn.linear\_model
- The lasso minimizes  $RSS + \lambda \sum_{j=1}^{p} |\beta_j|$ 
  - $\lambda \sum_{j=1}^{p} |\beta_j|$ : Shrinkage penalty, small if  $\beta_1, \dots, \beta_p$  are close to zero
  - In Python, use ElasticNet() with l1\_ratio=1 in sklearn.linear\_model
- Elastic net minimizes RSS+  $\lambda \left( (1 \alpha) \cdot \sum_{j=1}^{p} \beta_j^2 / 2 + \alpha \cdot \sum_{j=1}^{p} |\beta_j| \right)$ 
  - $\lambda \left( (1 \alpha) \cdot \sum_{j=1}^{p} \beta_j^2 / 2 + \alpha \cdot \sum_{j=1}^{p} |\beta_j| \right)$ : Shrinkage penalty, small if  $\beta_1, \dots, \beta_p$  are close to zero
  - In Python, use ElasticNet() in sklearn.linear\_model



## Coefficients of Ridge and the Lasso

• Predict default in the Credit dataset



A lot of small coefficients throughout the regularization path



Shrink coefficients to zero, perform variable selection

HW 2 Problem 4



# Principal component analysis





HW 3 Problem 3

## Bootstrap

- Resample the data by drawing *n* samples *with replacement* from the actual observations
- Can be used to calculate the standard errors of mean, quantile, regression coefficient, prediction at a test point...
- See the notebook (lecture 7 cross-validation and bootstrap.ipynb)





#### Decision tree

- 1. Partition the feature space into J distinct and non-overlapping regions,  $R_1, R_2, \dots, R_J$ 
  - Regression tree: Based on MSE
  - Classification tree: Based on Gini index or entropy
- 2. Make the same prediction for every observation in region  $R_i$ 
  - Regression tree: Mean of the training observations in  $R_j$
  - Classification tree: Mode of the training observations in  $R_j$
  - In Python, use DecisionTreeClassifier() in sklearn.tree for classification tree; use DecisionTreeRegressor() in sklearn.tree for regression tree
- 3. Prune a large tree from leaves to the root to control overfitting
  - In Python, use cost\_complexity\_pruning\_path()

See the notebook (lecture 16 - decision tree, random forest and boosting.ipynb)





HW 3 Problems 1 and 2



# Bagging and random forest

- We fit a decision tree to different Bootstrap samples
- When growing the tree
  - Bagging: Use all predictors
  - Random forest: use m < p predictors
    - Lead to very different (or "uncorrelated") trees from each sample
- Finally, average the prediction of each tree
- Pro: reduce variance of decision trees
- Generalization of KNN
- In Python, use RandomForestRegressor() in sklearn.ensemble



## Gradient boosting

#### Boosted trees

- Trees are grown sequentially using the information left from previously grown trees
- Each tree is fit on a **modified version** of the original data
- Idea is similar to **partial least squares**
- In Python, use GradientBoostingRegressor() for regression problems and GradientBoostingClassifier() for classification problems in sklearn.ensemble

