QTM 347 Machine Learning

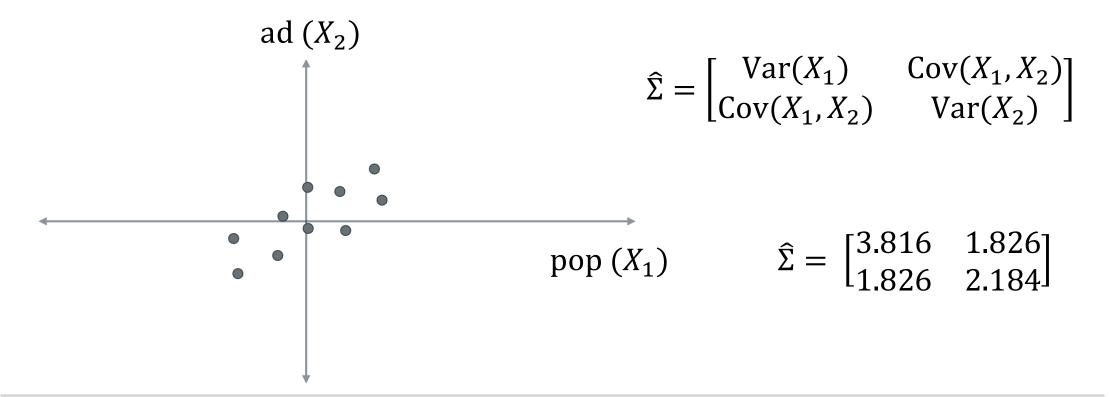
Lecture 18: PCA

Ruoxuan Xiong Suggested reading: ISL Chapter 6 and 12

• PCA

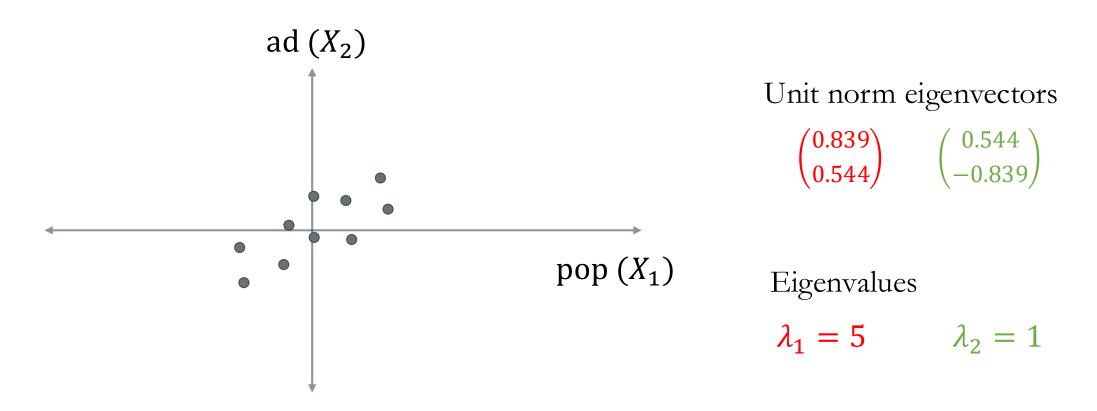
How to perform PCA I

- 1. Estimate the **covariance matrix** $\hat{\Sigma}$ of X_1, X_2, \dots, X_p .
 - $\hat{\Sigma}$ is a $p \times p$ matrix, the (i, j)-th entry being the covariance of X_i, X_j .
 - Example: population size (pop) and ad spending (ad) for 100 cities.



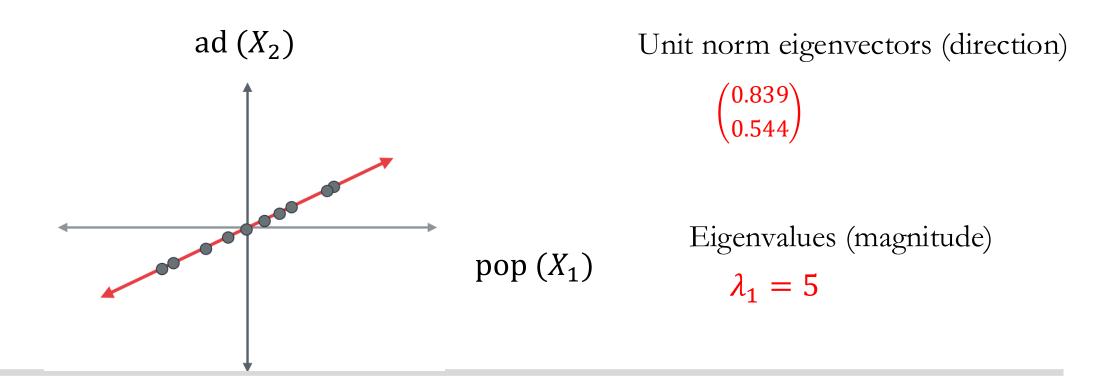
How to perform PCA II

- 2. Calculate the **eigenvalues** and **eigenvectors** of the covariance.
 - Covariance matrix: $\hat{\Sigma} = \begin{bmatrix} 3.816 & 1.826 \\ 1.826 & 2.184 \end{bmatrix}$.



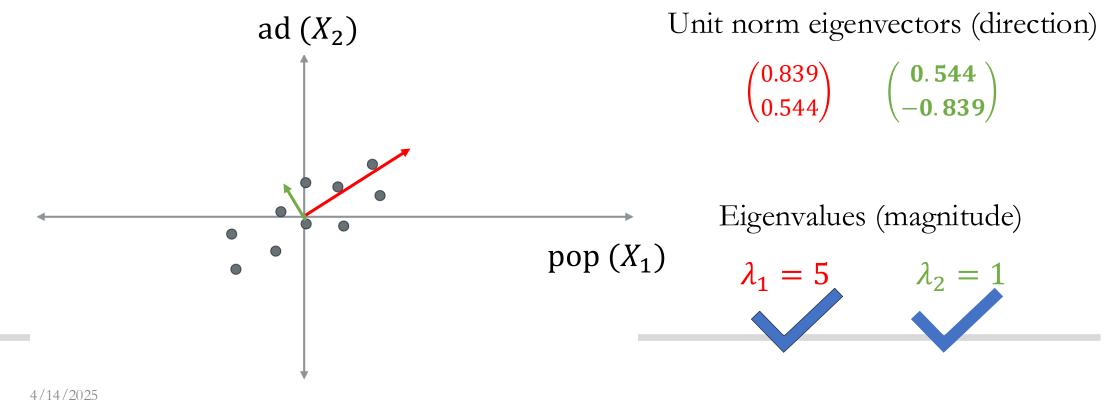
Projection to first principal component

- 3. Select the first principal component
- First principal component, which is corresponds to the following equation:
 - $z_{i1} = 0.839 \times (\text{pop}_i \overline{\text{pop}}) + 0.544 \times (\text{ad}_i \overline{\text{ad}}) \text{ and } Var(z_{i1}) = \lambda_1$

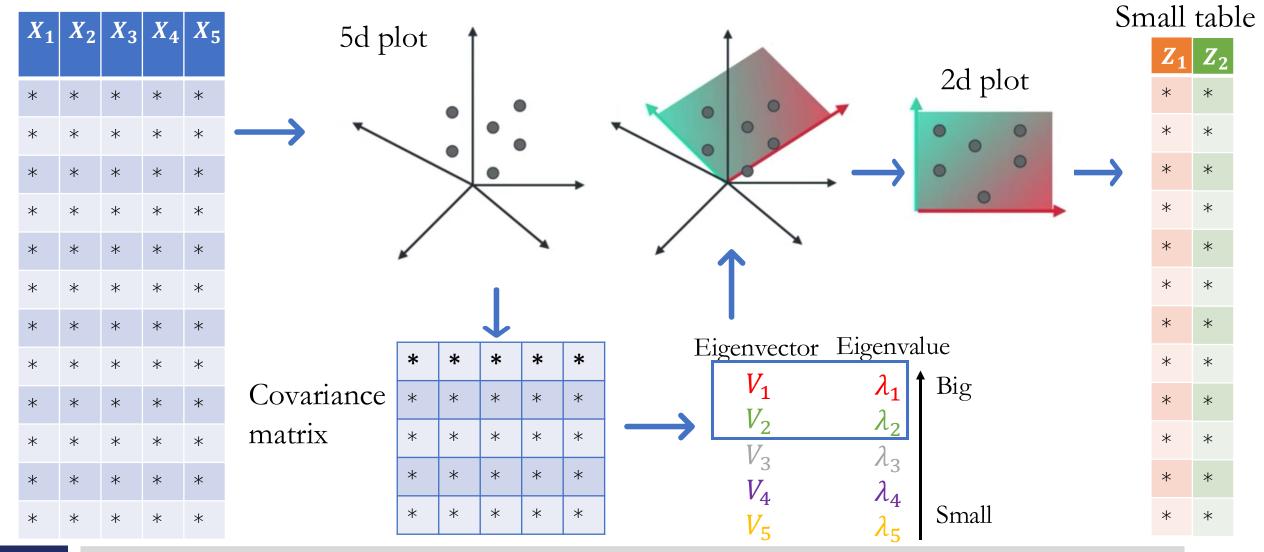


How to perform PCA IV

- 4. Select the second principal component (if necessary)
- The second principal component Z_2 has largest variance subject to being orthogonal to first principal component Z_1
 - $z_{i2} = 0.544 \times (\text{pop}_i \overline{\text{pop}}) 0.839 \times (\text{ad}_i \overline{\text{ad}}) \text{ and } Var(z_{i2}) = \lambda_2$



Summarizing PCA



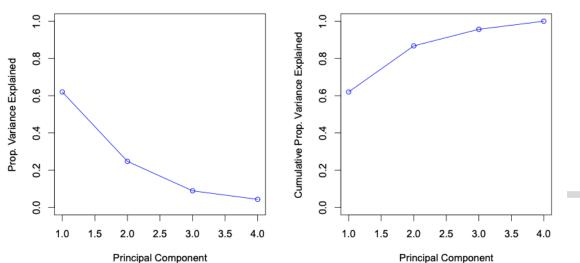
More on PCA

- Mean: Variables should be centered to have mean zero
 - First principal component (PC) reflects the direction of max variance, instead of the mean of the data
- Variance: Choose case by case whether to scale variables to have unit variance
 - Results typically *depend on* whether variables have been individually scaled
 - Small-scale variables will have small variance
 - Whether to scale depends on whether variables are measured on the same unit
 - Example 1: Variables are expression levels of genes (no need to scale the genes)
 - Example 2: Variables include ad spending and population size (scale the variables)

Choosing the number of PCs

• Choosing the number of PCs:

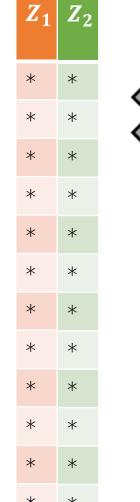
- How much information is lost by projecting observations on the first M PCs?
- Equivalently, how much variance of the data is not contained in the first M PCs?
- Choose the smallest number that explains a sizable amount of the variation
- Eigenvalues of feature covariance matrix: $\lambda_1, \lambda_2, \dots, \lambda_p$
- Scree plot shows the variance explained by each PC (an ad hoc method): $\frac{\lambda_1}{\lambda_1 + \lambda_2 + \dots + \lambda_p}, \frac{\lambda_2}{\lambda_1 + \lambda_2 + \dots + \lambda_p}, \dots, \frac{\lambda_p}{\lambda_1 + \lambda_2 + \dots + \lambda_p}$



The first PC explains 62% The next PC explains 24.7%

PCA for low-rank matrix factorization

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	<i>X</i> ₅
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*
*	*	*	*	*



$\mathbf{\mathbf{A}}$	*	*	*	*	*	V_1^{T}
\times	*	*	*	*	*	V_2^{\top}

- PCA finds a **low-rank matrix factorization** that minimizes the reconstruction error
- Used when data has inherent low-dimensional structure
- Example: Rows are users and columns are movies
- We have

$$X \approx \begin{bmatrix} Z_1 & Z_2 \end{bmatrix} \begin{bmatrix} V_1^{\mathsf{T}} \\ V_2^{\mathsf{T}} \end{bmatrix}$$

Rationale behind low-rank approximation

- For any *j*th PC, we have $XV_j = Z_j$, or equivalently, for each unit $i, Z_{ij} = V_{1j}X_{i1} + V_{2j}X_{i2} + \dots + V_{pj}X_{ip}$, where V_{kj} is the *k*th entry in V_j
- Right multiply $XV_j = Z_j$ by V_j , and sum over j, we have $\sum_{j=1}^p XV_jV_j^{\mathsf{T}} = \sum_{j=1}^p Z_jV_j^{\mathsf{T}}$
- As X does not depend on j, we can take X out from the sum and $\sum_{j=1}^{p} XV_{j}V_{j}^{\top} = X \sum_{j=1}^{p} V_{j}V_{j}^{\top} = X$
 - Here we use an important property of eigenvectors: $\sum_{j=1}^{p} V_{j} V_{j}^{\mathsf{T}} = I_{p}$ (identity matrix)

$$X = \sum_{j=1}^{p} Z_{j} V_{j}^{\top} = \begin{bmatrix} Z_{1} & \cdots & Z_{p} \end{bmatrix} \begin{bmatrix} V_{1}^{\top} \\ \vdots \\ V_{p}^{\top} \end{bmatrix} \approx \begin{bmatrix} Z_{1} & Z_{2} \end{bmatrix} \begin{bmatrix} V_{1}^{\top} \\ V_{2}^{\top} \end{bmatrix}$$

• Third to last eigenvectors are truncated when $Var(Z_j)$ is small for large $j = 3, \dots, p$

Missing values and matrix completion

- In data streaming services (e.g., Netflix, Amazon), most of the rating matrix is missing --- users only rated a tiny fraction of all movies/items
- We use the approximation

$$X \approx \begin{bmatrix} Z_1 & Z_2 \end{bmatrix} \begin{bmatrix} V_1^\top \\ V_2^\top \end{bmatrix}$$

- Most entries in **X** are *missing*
- $\begin{bmatrix} Z_1 & Z_2 \end{bmatrix}$: latent user features (e.g., cliques) $\begin{bmatrix} V_1^T \end{bmatrix}$
- $\begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$: latent movie features (e.g., genres)
- Estimate Z and V using observed entries in X
- An *iterative* algorithm:
 - 1. Impute missing entries by \overline{X} (mean)
 - 2. Apply PCA or similar methods to estimate Z and V
 - 3. Use estimated Z and V to impute missing entries in X
 - 4. Repeat Steps 2 and 3 until convergence

	Jerry	Magii Oces	IIC IIS Road	to Pet	dition otunate	Man Melt	You C	an Daisy Daisy Fao Po	pes Laundr	omati	Social Network
Customer 1	•	•	•	•	4	•	•	•	•	•	
Customer 2	•	•	3	•	•	•	3	•	•	3	
Customer 3	•	2		4	•	•	•	•	2	•	
Customer 4	3	•		•	•	•	•	•	•	•	
Customer 5	5	1	•	•	4	•	•	•	•	•	
Customer 6	•	•	•	•	•	2	4	•	•	•	
Customer 7	•	•	5	•	•	•	•	3	•	•	
Customer 8	•	•	•	•	•	•	•	•	•	•	
Customer 9	3	•	•	•	5	•	•	1	•	•	
÷		•	:	:				•	:	•	· · .

