QTM 347 Machine Learning

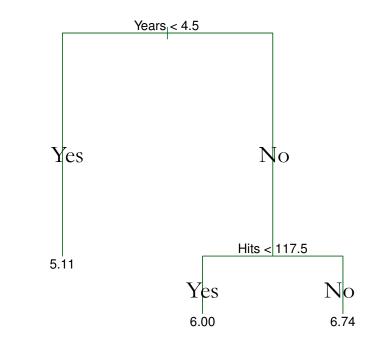
Lecture 12: Decision tree

Ruoxuan Xiong Suggested reading: ISL Chapter 8

Example: Predicting a baseball player's salary

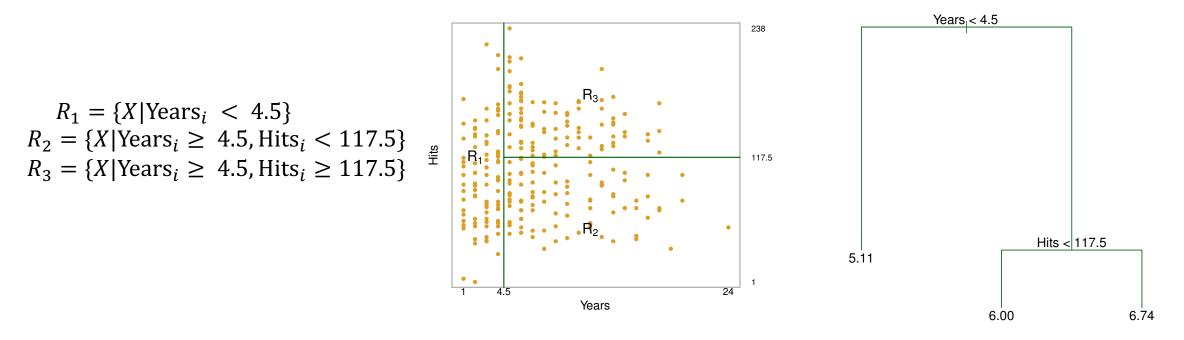
- Predict a baseball player's log salary (Y_i) based on
 - Years: The number of years that he has played in the major leagues
 - Hit: The number of hits that he made in the previous year
- Regression tree consists of a series of splitting rules
 - Years_i < 4.5: $\hat{Y}_i = 5.11$ Years_i ≥ 4.5 & Hits_i < 117.5: $\hat{Y}_i = 6.00$

▶ Years_i ≥ 4.5 & Hits_i ≥ 117.5:
$$\hat{Y}_i = 6.74$$



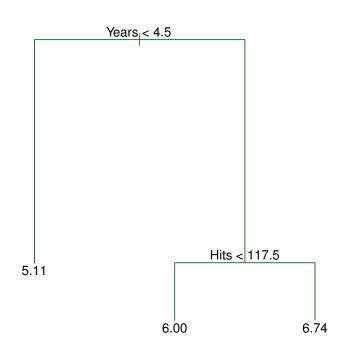
Example: Predicting a baseball player's salary

- Predict a baseball player's log salary (Y_i) based on
 - Years: The number of years that he has played in the major leagues
 - Hit: The number of hits that he made in the previous year
- Regression tree segments the feature space to disjoint regions

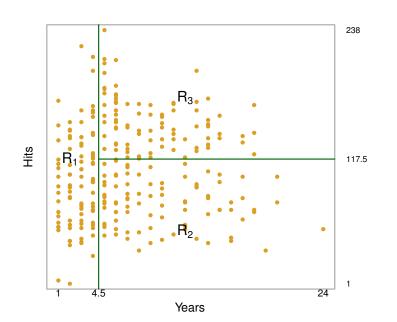


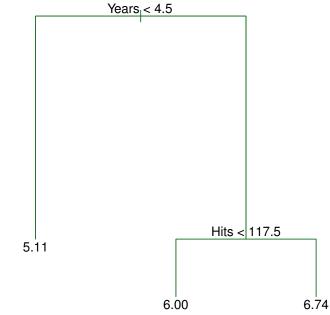
Advantage of decision trees

- Easy to interpret
- Closer to human decision-making
- Easy to visualize graphically

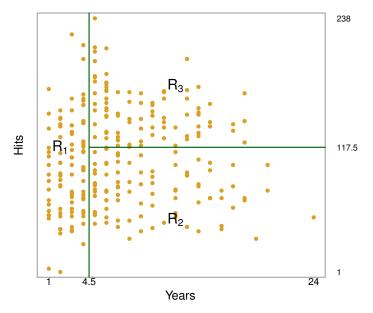


- 1. Partition the feature space into J distinct and non-overlapping regions, R_1, R_2, \dots, R_J
- 2. Make the same prediction for every observation in region R_j : Mean of the training observations in R_j





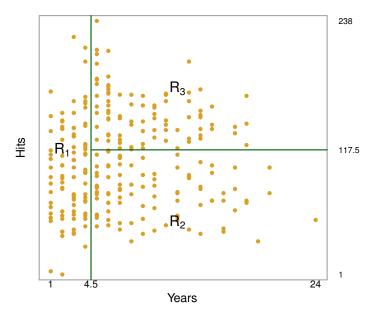
- 1. Partition the feature space into J distinct and non-overlapping regions, R_1, R_2, \dots, R_J
- 2. Make the same prediction for every observation in region R_j : Mean of the training observations in R_j
- Example of step 2: (Years_i, Hits_i, Y_i)
 - Alan: (14, 81, 6.16)
 - Al: (2, 37, 4.25)
 - Andres: (2, 81, 4.32)
 - Bill: (18, 168, 6.66)
 - Brian: (14, 137, 6.80)
 - Bob: (7, 49, 5.70)



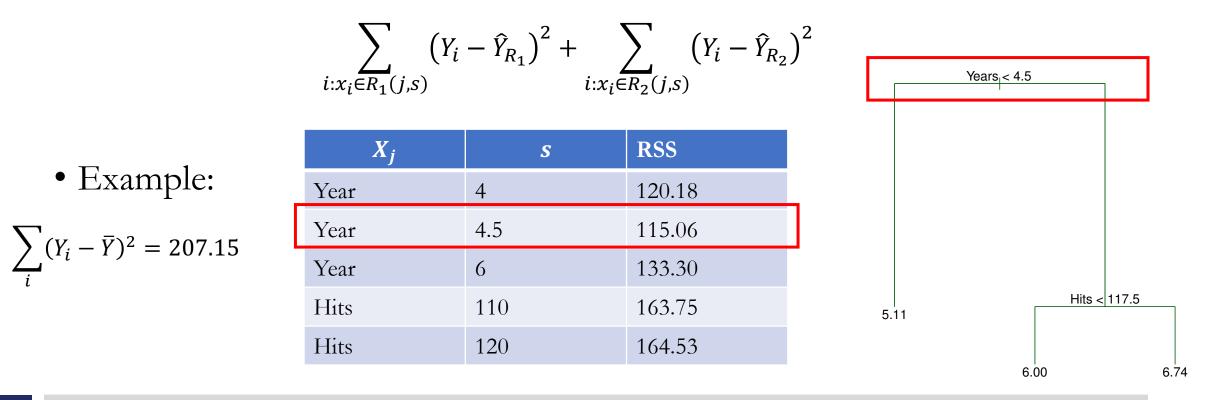
- 1. Partition the feature space into *J* distinct and non-overlapping regions, R_1, R_2, \dots, R_J
- 2. Make the **same** prediction for every observation in region R_j : Mean of the training observations in R_j
- Example of step 2: (Years_i, Hits_i, Y_i)
 - Alan: (14, 81, 6.16)
 - Al: (2, 37, 4.25)
 - Andres: (2, 81, 4.32)
 - Bill: (18, 168, 6.66)
 - Brian: (14, 137, 6.80)
 - Bob: (7, 49, 5.70)

$$R_{1} = \{X | \text{Years}_{i} < 4.5\} \qquad \hat{Y}_{R_{1}} = \frac{4.25 + 4.32}{2}$$
$$R_{2} = \{X | \text{Years}_{i} \ge 4.5, \text{Hits}_{i} < 117.5\} \qquad \hat{Y}_{R_{2}} = \frac{6.16 + 5.70}{2}$$
$$R_{3} = \{X | \text{Years}_{i} \ge 4.5, \text{Hits}_{i} \ge 117.5\} \qquad \hat{Y}_{R_{3}} = \frac{6.66 + 6.80}{2}$$

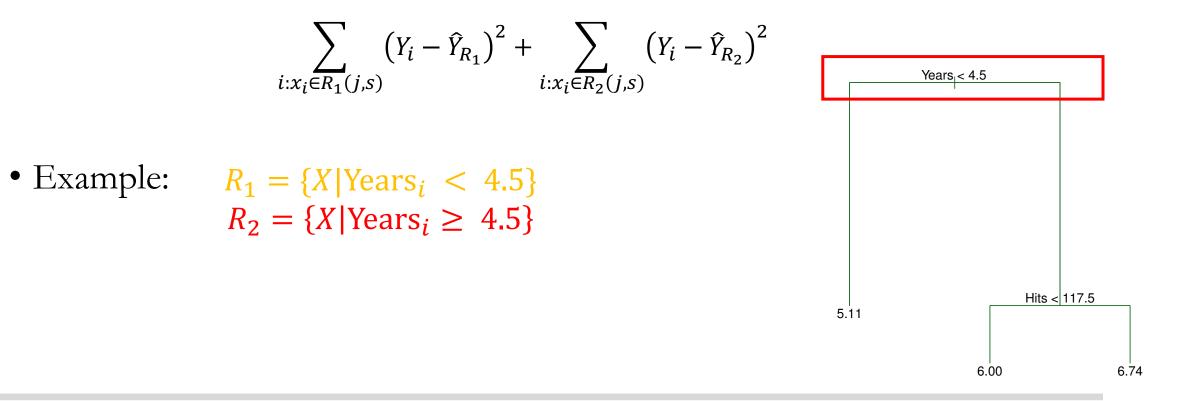
- 1. Partition the feature space into *J* distinct and non-overlapping regions, R_1, R_2, \dots, R_J .
 - Find boxes that minimize the RSS $\sum_{j=1}^{J} \sum_{i \in R_j} (Y_i \hat{Y}_{R_j})^2$.
 - \hat{Y}_{R_j} is the mean label value for the training observations in R_j .
 - Next: Top-down, greedy approach, begins at the top of the tree.



- Select 1st cut point: Select the predictor X_i and the cut point s
 - Define the pair of half-planes $R_1(j,s) = \{X | X_j < s\}$ and $R_2(j,s) = \{X | X_j \ge s\}$ that minimize



- Select 1st cut point: Select the predictor X_i and the cut point *s*
 - Define the pair of half-planes $R_1(j,s) = \{X | X_j < s\}$ and $R_2(j,s) = \{X | X_j \ge s\}$ that minimize

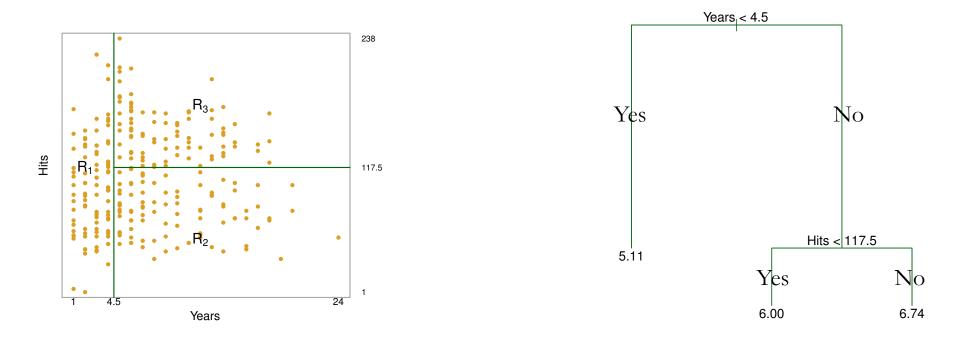


- Select 2nd cut point: Select a region R_k , a predictor X_j and a splitting point S, such that
 - Splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS
- Example: $R_1 = \{X | Years_i < 4.5\}$ and $R_2 = \{X | Years_i \ge 4.5\}$

R_k	Xj	S	RSS
R_1	Year	3.5	105.85
R_1	Hits	110	107.66
R_1	Hits	120	108.88
R_2	Year	5.5	107.65
<i>R</i> ₂	Hits	110	95.91
R_2	Hits	117.5	95.18
<i>R</i> ₂	Hits	120	96.23

• Illustration: Combining both cut points,

- $R_1 = \{X | \text{Years}_i < 4.5\}$
- $R_2 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i < 117.5\}$
- $R_3 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i \ge 117.5\}$

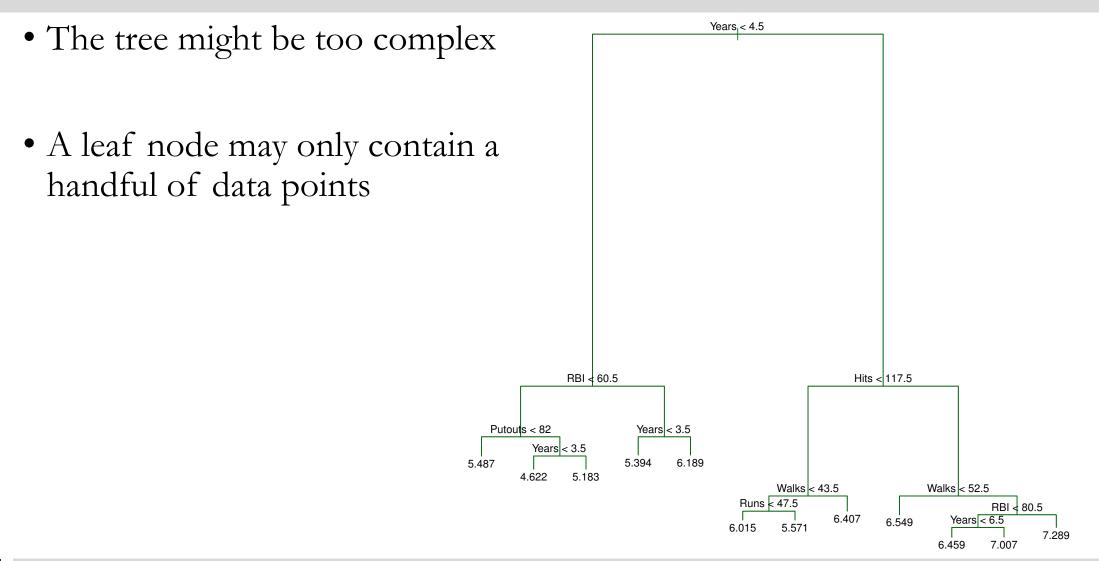


- Select 3rd cut point: Repeat the same
 - Select a region R_k , a predictor X_j and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS.

• ...

• Stopping rule: Terminate when there are five or fewer observations in each region

Decision tree can be overfitted



How to alleviate overfitting?

• Idea 1: Find the optimal subtree by cross validation

>There are too many possibilities, so we would still over fit

• Idea 2: Stop growing the tree when the RSS doesn't drop by more than a threshold with any new cut

>In our greedy algorithm, it is possible to find good cuts after bad ones

- **Possible solution**: Prune a large tree T_0 from leaves to the root
- Cost complexity pruning:
 - Solve the problem:

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(Y_i - \hat{Y}_{R_j} \right)^2 + \alpha |T|$$

Similar to lasso

- |T|: number of terminal nodes of the tree T
- If α is larger, then |T| tends to be _____
 - A. larger
 - B. smaller

- **Possible solution**: Prune a large tree T_0 from leaves to the root
- Cost complexity pruning:
 - Solve the problem:

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(Y_i - \widehat{Y}_{R_j} \right)^2 + \alpha |T|$$

Similar to lasso

- |T|: number of terminal nodes of the tree T
- If α is larger, then |T| tends to be smaller

- **Possible solution**: Prune a large tree T_0 from leaves to the root
- Cost complexity pruning:
 - Solve the problem:

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(Y_i - \widehat{Y}_{R_j} \right)^2 + \alpha |T|$$

Similar to lasso

- When $\alpha = 0$, we select the full tree ($T = T_0$)
- When $\alpha = \infty$, we select the null tree (|T| = 0)

- **Possible solution**: Prune a large tree T_0 from leaves to the root
- Cost complexity pruning:
 - Solve the problem:

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(Y_i - \hat{Y}_{R_j} \right)^2 + \alpha |T| \qquad \text{Similar to lasso}$$

• For $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_m$, When $\alpha = 0$, solution is T_0 When $\alpha = \alpha_1$, solution is T_1 When $\alpha = \alpha_2$, solution is T_2 . When $\alpha = \alpha_m$ solution is T_m

• Tree size:
$$|T_m| < |T_{m-1}| < \dots < |T_2| < |T_1| < |T_0|$$

- **Possible solution**: Prune a large tree T_0 from leaves to the root
- Cost complexity pruning:
 - Solve the problem:

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(Y_i - \hat{Y}_{R_j} \right)^2 + \alpha |T| \qquad \text{Similar to lasso}$$

• For $0 < \alpha_1 < \alpha_2 < \cdots < \alpha_m$ (the corresponding trees are $T_0, T_1, T_2, \cdots, T_m$), choose the optimal α (the optimal T_i) by cross validation

Cross validation to select α

- Cross-validation: Split the training observations into 10 folds
 - For $k = 1, \dots, 10$, using every fold except the *k*th:
 - For a range of values $\alpha_1, \alpha_2, \dots, \alpha_m$, construct the corresponding sequence of trees $T_1^{(k)}, T_2^{(k)}, \dots, T_m^{(k)}$
 - The sequence of trees vary with the hold-out fold
 - Make prediction for each region in each tree $T_i^{(k)}$
 - For each tree $T_i^{(k)}$, calculate the RSS on the hold-out fold k
 - Select the parameter α that minimizes the average error across 10 folds

Possible variation of cross-validation

- Cross-validation: Split the training observations into 10 folds
 - For a range of values $\alpha_1, \alpha_2, \dots, \alpha_m$, construct the corresponding sequence of trees are T_1, T_2, \dots, T_m
 - Tree structures are fixed in the cross validation
 - For $k = 1, \dots, 10$, using every fold except the *k*th
 - Make prediction for each region in each tree T_i
 - Prediction for each region vary with the hold-out fold k
 - For each tree T_i , calculate the RSS on the hold-out fold k
 - Select the optimal tree T_i that minimizes the average error across 10 folds
- Is this correct?

Possible variation of cross-validation

- Cross-validation: Split the training observations into 10 folds
 - For a range of values $\alpha_1, \alpha_2, \dots, \alpha_m$, construct the corresponding sequence of trees are T_1, T_2, \dots, T_m
 - Tree structures are fixed in the cross validation
 - Select the optimal tree T_i that minimizes the average error across 10 folds

• Is this correct?

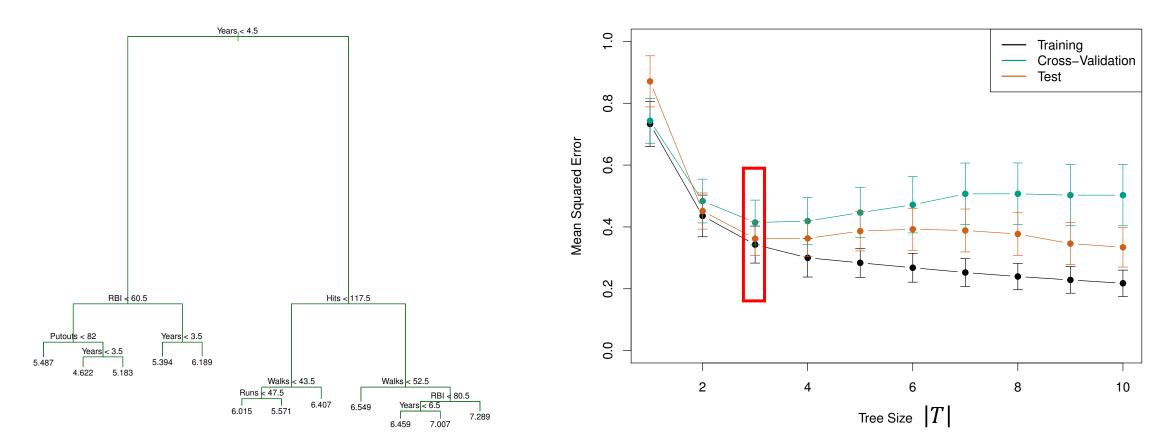
- Nope ③ We need to include the construction of trees, using only the training data
- The construction of trees can overfit

Cross-validation to select α

- Cross-validation: Split the training observations into K folds
 - Hold out the *k*th fold, for a range of values $\alpha_1, \alpha_2, \dots, \alpha_m$, construct the corresponding sequence of trees are $T_1^{(k)}, T_2^{(k)}, \dots, T_m^{(k)}$
 - The sequence of trees vary with which fold is held out
 - Use tree $T_i^{(k)}$ to make prediction and calculate RSS on the hold-out fold k
 - Select the optimal parameter α that minimizes the average error across ten folds

Example: a baseball player's salary

• Unpruned tree (many terminal nodes) without any cost complexity tuning



Example: a baseball player's salary

• Pruned tree (three terminal nodes, |T| = 3) with the cost complexity tuning

