

DATASCI 347: Machine Learning

Lecture 0: Course Logistics and Introduction

Ruoxuan Xiong

Who am I

- Assistant Professor, Data & Decision Sciences
- PhD (Stanford Management Science and Engineering), Postdoc (Stanford Graduate School of Business)
- Research: causal inference, experimental design, machine learning, and econometrics
- Applications: digital platforms, healthcare, and finance

Lecture plan

- Course structure
 - What Is Machine Learning?
 - Expectations
 - Course logistics
 - Evaluation
- Course outline

What Is Machine Learning?

- Algorithms that **learn from data**
- Goal: **prediction or decision-making**
- Core idea: **generalize beyond observed data**
- Examples: recommender systems, search, speech, self-driving cars

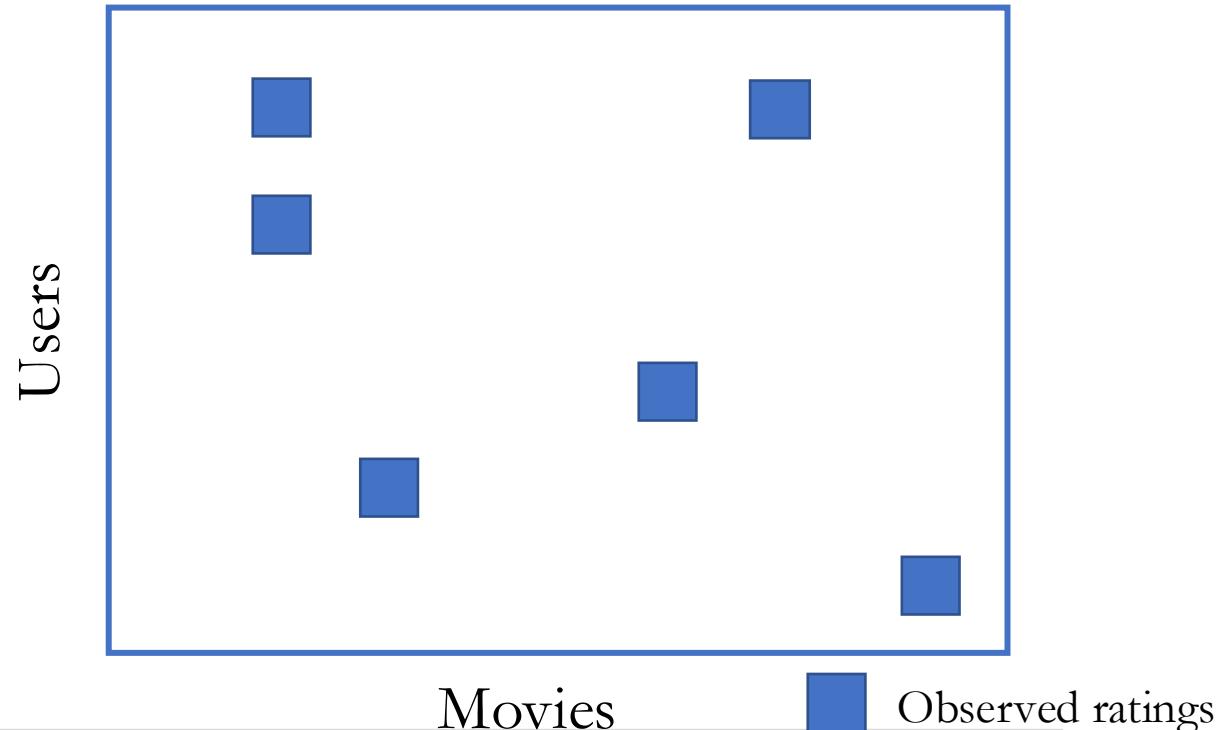
Recommender system: The Netflix challenge

- Netflix provided $\sim 100M$ ratings that $\sim 500K$ users gave to $\sim 18K$ movies
- Most ratings are missing
 - $500K \times 18K = 9,000M \gg 100M$
- Goal: *predict missing ratings*
 - Learn users' preferences
 - Recommend movies to users
- The team whose model with highest accuracy was awarded \$1 million



Recommender system: The Netflix challenge

- In this course, you will learn
 - How to **build predictive models**
 - How to **evaluate accuracy**
 - How model structure reflects data structure



Expectations

- **Lectures:**

- Focus: **intuition + when to use what** which method
- Some probability & statistics
- Lots of examples

- **Homework:**

- Mostly **Python coding** to practice how to use various methods
- Some conceptual/theoretical questions
- Group-based problem solving

Expectations

- Course project:
 - Apply ML to **real data**
 - Learn GitHub
 - Exposure to **research frontiers**

Course logistics

- Instructor: Ruoxuan Xiong
- Class time: Mon/Wed 11:30 – 12:45 pm, PAIS 225
- Office hours: Wed 3:00 – 4:00 pm in my office, PAIS 581
- Details in the syllabus on Canvas
- Course website:
<http://www.ruoxuanxiong.com/DATASCI347/DATASCI347.html>

Evaluation

- Homework 30%
- Take-home exam: 30%
- Course project presentation (proposal and final presentation): 15%
- Project GitHub submission: 20%
- Participation: 5%

Homework

- 3 group homework assignments
 - Groups of **up to 4**; sign up via the Google Sheet by **Wed 1/21**
 - **Same group** for all homework assignments
- Late days (group policy)
 - Each group has **3 total late days** for the semester
 - You may use **at most 2 late days** on any single homework

Important dates

- **Homework**

- Problem set 1: out 1/21, due 2/11
- Problem set 2: out 2/11, due 3/4
- Problem set 3: out 3/4, due 4/1

- **Take-home exam**

- Out Wed 4/8 00:00 am, due Sun 4/12 11:59 pm
- No class on 4/8
- Choose any 24-hour window during the exam period

Course project

- **Instructions:** see the [Google doc](#)
- Resources we provide
 - Data repos: UCI ML repos, Kaggle, OpenML
 - Domains: image, natural language, network and graph
 - Example research venues: ICML, NeurIPS, ICLR, ACL, EMNLP
- Choose one project path
 - **Applied project:** pick a dataset and apply methods from the course
 - **Replication/extension:** replicate a paper and explore an extension
- **Teams:** same group as homework

Important dates

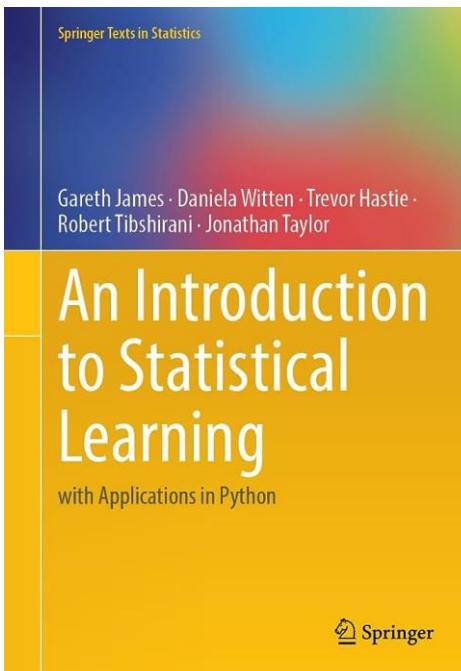
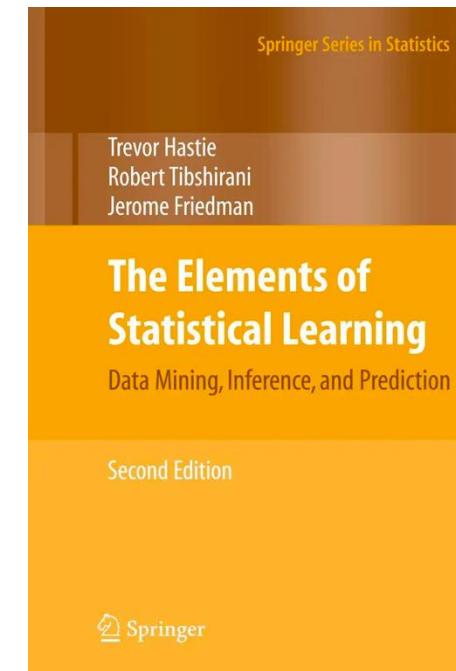
- **Project proposal presentation:** Wed 3/18
 - 5 minutes per group
- **Final project presentation:** Wed 4/22 and Mon 4/27
 - 10 minutes per group (motivation, setup, results)
 - **Before presenting:** create a **public GitHub repo** with code + current findings
 - Peer feedback counts toward **participation**
- **Final project deadline:** Wed 5/6
 - Finalize the GitHub repo and documentation

Participation

- You can earn participation credit in **either** of these ways:
 1. **In class:** attend and **ask/answer questions**
 2. **Online:** submit questions or course feedback via the [Google form](#)
 - We'll spend the **first few minutes of each lecture** reviewing selected questions from the form

Notes and textbooks

- Lecture notes available on course website and Canvas before lecture
- Suggested textbooks (but not required):
 - James, Witten, Hastie, and Tibshirani, *An introduction to statistical learning*
 - Hastie, Tibshirani, and Friedman, *The elements of statistical learning*



Lecture plan

- Course structure
 - What is this class about?
 - Expectations
 - Course logistics
 - Evaluation
- Course outline

Supervised vs unsupervised learning

- **Supervised learning** (main focus of this course)
 - **Data:** $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$
 - X_i : features (predictors)
 - Y_i : label/response
 - **Goal:** learn a function f so that $\hat{Y} = f(X)$
 - **Examples:** regression, classification (e.g., linear/logistic regression)
- **Unsupervised learning**
 - **Data:** X_1, X_2, \dots, X_n
 - **Goal:** discover structure/patterns in X (no labels)
 - **Examples:** clustering, dimensionality reduction (PCA)

Supervised machine learning

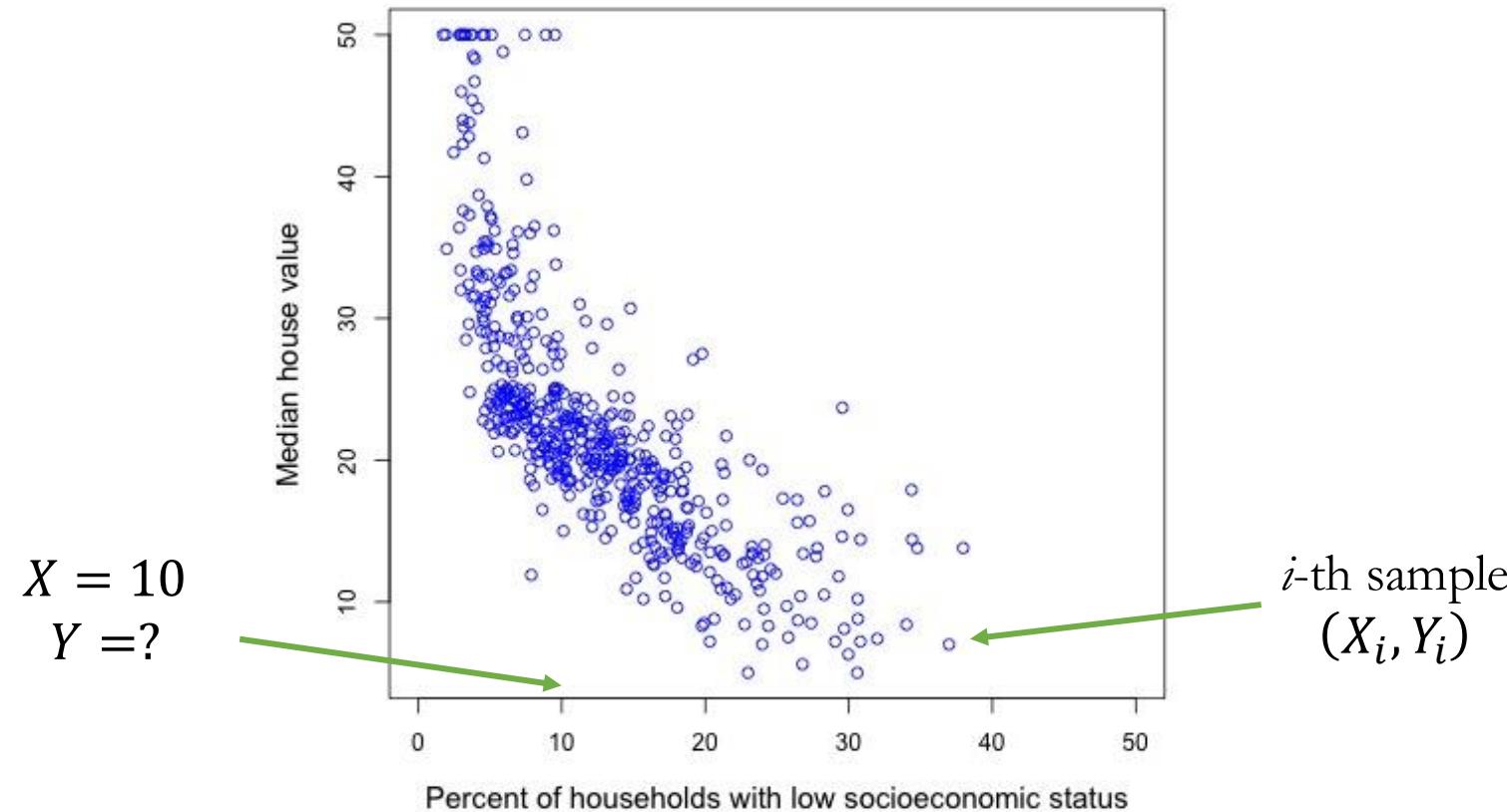
- **Example:** Predicting housing prices (Boston suburbs)
- **Training data:** given a training dataset that contains n samples

$$(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$$

- X_i : feature vector (predictors)
- Y_i : target (house value)
- **Task:** If a neighborhood has x % of households with low socioeconomic status, what is the predicted median house value?

Prediction of housing values in suburbs of Boston

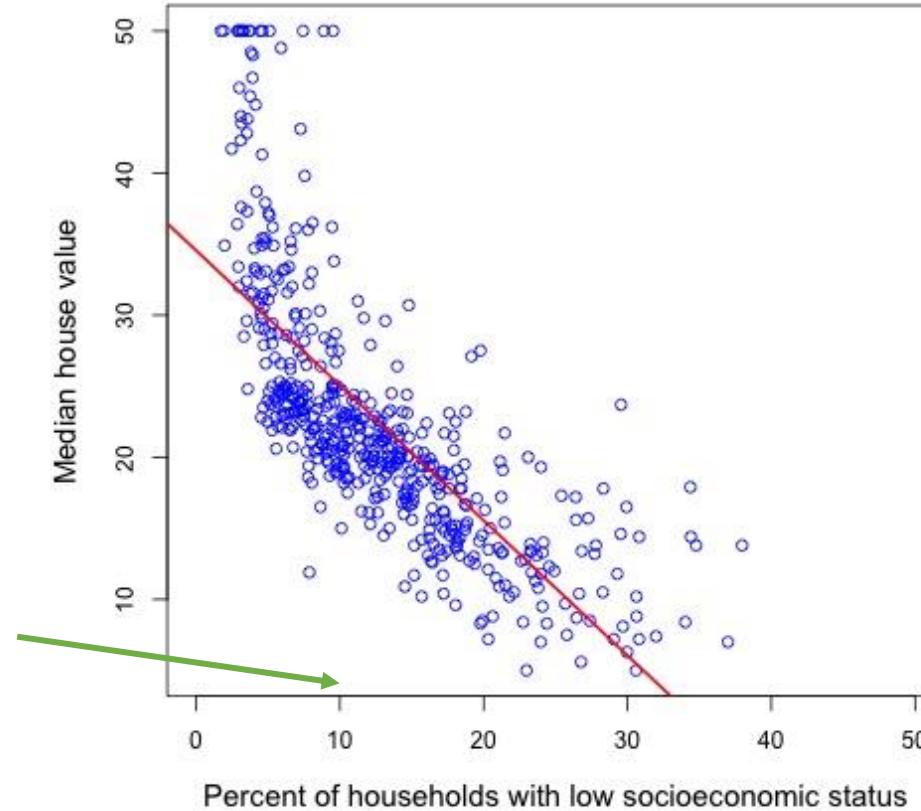
- **Goal:** predict **median house value** using a single feature
- Feature X : % of households with low socioeconomic status (`lstat`)



Prediction of housing values in suburbs of Boston

- **Goal:** predict **median house value** using a single feature
- Feature X : % of households with low socioeconomic status (`lstat`)

$$X = 10 \\ Y = ?$$



Fit a linear model to the data

Prediction of housing values with many features

- Real problems use **multiple features** (predictors), e.g.
 - % of households with low socioeconomic status (lstat)
 - average number of rooms per house (rm)
 - average age of houses (age)
 - per capita crime rate (crim)
 - ...
- **Predicting housing prices:** learn a model f so that $\widehat{Y}_i = f(X_i)$

Which model can we use?

- Start simple: **multiple linear regression**
 - $Y = \beta_0 + \beta_1 \cdot \text{lstat} + \beta_2 \cdot \text{rm} + \beta_3 \cdot \text{age} + \beta_4 \cdot \text{crim} + \dots + \varepsilon$
- **Not all features are useful:** we may need
 - **Feature selection** (Lasso) or **shrinkage** (Ridge)
 - **Dimension reduction** (principal components regression)
- If the relationship is more complex, we can use **nonlinear models**

Tree-based methods

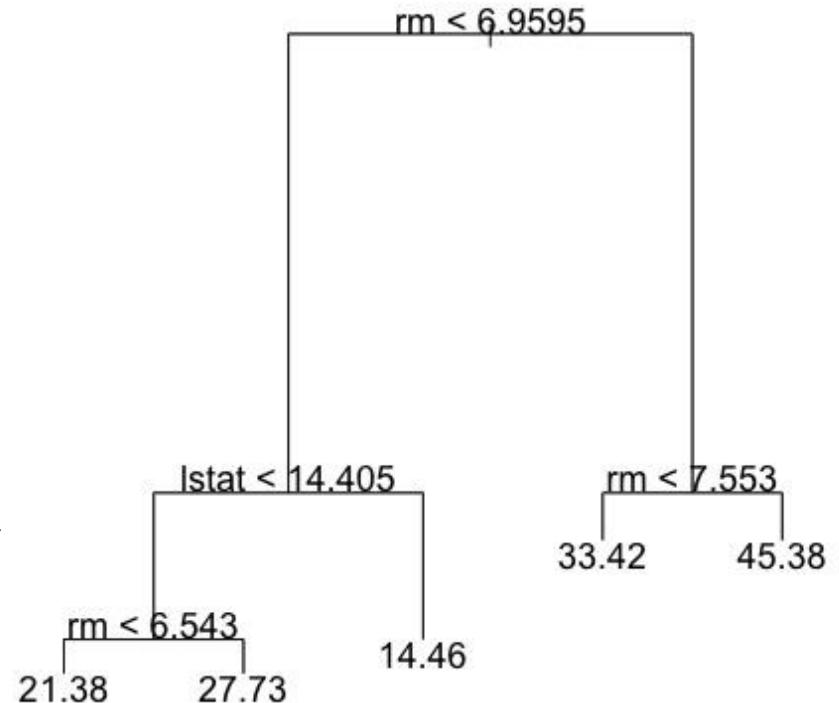
- **Tree-based models are nonlinear:** they split the feature space into regions

- **Decision tree**

- A sequence of **if–then rules** (e.g., split on rm , then $lstat$, ...)

- **Random forest**

- many trees averaged together (usually better accuracy and stability)



Neural networks

- **Feedforward neural network**

- Architecture: Input layer \rightarrow hidden layers \rightarrow output layer
- **Key idea:** nonlinear activations make the model flexible
- Example: $\text{ReLU}(x) = \max(x, 0)$



- **One hidden-layer network**

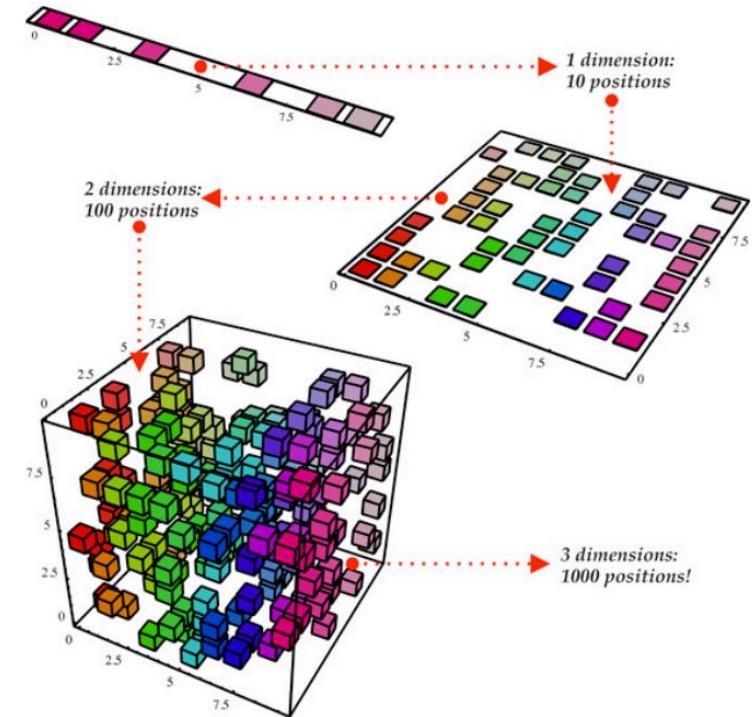
- Linear step: $z_1 = W_1 x + b_1$ (maps the input to a feature representation)
- Nonlinearity: $a_1 = \max(z_1, 0)$
- Output: $z_2 = W_2 a_1 + b_2$ (then map to \hat{y} depending on task)

Which model should we choose?

- **Which model should we choose?**
 - There is no single “best” model — choice depends on goals and data
 - We’ll discuss key **tradeoffs** (e.g., **bias–variance**, interpretability vs. flexibility)
- **Two tools you’ll use throughout the course**
 - **Cross-validation:** estimate out-of-sample performance (model selection)
 - **Bootstrap:** quantify uncertainty (e.g., SEs for $\hat{\beta}$ or predictions \hat{Y})
- *Both are **resampling methods:** *repeatedly drawing samples* to assess performance or uncertainty*

Unsupervised machine learning

- **Goal:** learn structure/representations from **features only** (no Y)
- **Example 1 (dimension reduction):** map 3 features (lstat, lm, age) to a single feature $z \in \mathbb{R}$
 - so z preserves important information in the original data
- **Popular approaches:** Principal component analysis, autoencoder



Unsupervised machine learning

- **Example 2 (clustering):** group people using **height** and **weight**
- **Goal:** people in the same group are **more similar** to each other than to those in other groups
- **Method: Clustering** (e.g., k -means)

