Target-PCA: Transfer Learning Large Dimensional Panel Data

Junting Duan, Markus Pelger and Ruoxuan Xiong

Stanford University and Emory University

Motivation

Goal: Estimate latent factor model and impute missing values for large dimensional panel data with missing data

- Large dimensional panel data with missing entries is prevalent: e.g. macroeconomic data, financial data, recommendation system
- Latent factor model is commonly used to summarize large panels and impute missing values

Problem: Panel is not informative enough to estimate the factor structure:

- Observed data insufficient to estimate full factor model:
 - Some times are never observed in panel, e.g. low-frequency data
 - Missingness depends on factor structure, e.g. selection bias
- Weak factor signals: Factors affect only small subset of units
 - Weak factors not identified by principal component analysis (PCA)

Our Solution: Target-PCA optimally combines information from multiple auxiliary panels to estimate factor structure in target panel

A Motivating Example: Low-Frequency Macroeconomic Data

Question: How to obtain high frequency macroeconomic time series that are only observed at lower frequency?

- Naive imputation by lagged values cannot capture fluctuation between observations
- Latent factors for time periods without observations cannot be estimated

Low-frequency observation pattern: Rows denote time periods, columns denote macroeconomic variables (dark color: observed, light color: missing)

This Paper: Use Auxiliary Data

Use auxiliary data that share some common factors with target data, e.g.,

- Target data: Quarterly observed macroeconomic time-series
- Auxiliary data: Daily observed price-based information (stock returns)

Learn the latent factor structure for target data by optimally weighting auxiliary and target data

- Identify weak signals in target data
- Increase estimation efficiency of common latent factors

Challenge: How to optimally use auxiliary data?

• Factor model difference

Auxiliary data may not contain all factors for the target

- \Rightarrow Auxiliary data not sufficient to learn factor model
- Dimension difference

Auxiliary data may have much more units than target data

- \Rightarrow Too low weight for target panel when simply concatenating panels
- Missing pattern issues

Missing pattern can depend on factor model Missing pattern affects the effective sample size

This paper: Novel method Target-PCA:

Optimally combines auxiliary and target data to estimate latent factor model and impute missing entries for the target

Contribution

Methodology:

- New setup to estimate latent factors for target data using auxiliary data
- Identify two effects in combining auxiliary with target data: (1) detection of weak signals, (2) efficient estimation
- Target-PCA: A novel estimator for latent factor model using the idea of transfer learning, and simultaneously achieves the two effects
- Inferential theory for target-PCA under very general assumptions on the approximate factor model and missing pattern
- \Rightarrow Easy-to-use and widely applicable estimator under general assumptions!
- \Rightarrow Importance: Imputation, factor estimation, causal inference

Empirics:

• Demonstrate superior performance of target-PCA, compared to benchmarks, to impute unbalanced macroeconomic panel

Factor modeling

- Full observations with inferential theory: Bai and Ng 2002, Bai 2003, Fan, Liao and Mincheva 2013, Pelger and Xiong 2021a+b
- Partial observations: Stock and Watson 2002, Jin, Miao and Su 2021, Bai and Ng 2021a, Cahan, Bai and Ng 2022, Xiong and Pelger 2022
- Weak factor detection: Lettau and Pelger 2020a+b, Bai and Ng 2021b, Giglio, Xiu, and Zhang 2021, Onatski 2022, Huang, Jiang, Li, Tong, and Zhou 2022

Matrix completion

- Independent sampling: Candes and Recht 2009, Mazumder, Hastie and Tibshirani 2010, Negahban and Wainright 2012
- Independent sampling with inferential theory: Chen, Fan, Ma and Yan 2019

Model and Estimation

Model Setup: Approximate Factor Model for Target and Auxiliary Data

Approximate factor models with k common factors (union of all factors)

Target data: N_y units over T time periods

Auxiliary data: N_{x} units over T time periods

- Common factors F in Y and X: without loss of generality, loadings can be 0 for some factors, and Λ^T_yΛ_y and Λ^T_xΛ_x not full rank
- Dimension: N_y , N_x , and T are large, N_x can be much larger than N_y
- Strength of factor j in Y:
 - \Rightarrow Strong on Y: $\sum_{j} (\Lambda_{y})_{ij}^{2} / N_{y} = O_{p}(1)$
 - \Rightarrow Weak on Y: $\sum_{i} (\Lambda_y)_{ij}^2 / N_y = o_p(1)$, e.g., $(\Lambda_y)_{ij} \neq 0$ for small subset
 - \Rightarrow Not existant on Y: $(\Lambda_y)_{ij} = 0$ for all i
- Similar for X, but assume weak factors on Y are strong on X
- Common component $C_{ti} = F_t^{\top}(\Lambda_y)_i$, idiosyncratic errors $(e_x)_{ti}$ and $(e_y)_{ti}$

Model Setup: Observation Pattern of Target Y

Observation matrix
$$W^{Y} = [W_{ti}] : W_{ti} = \begin{cases} 1 & \text{observed} \\ 0 & \text{missing} \end{cases}$$

W^{γ} can be quite general

Assumption: Observation Pattern of Y

- 1. W^{γ} is independent of F and e_y (but can depend on Λ_y)
- 2. Sufficiently many time-series observations: $\frac{|Q_{ij}^{Y}|}{\tau} \ge q > 0$, where Q_{ij}^{Y} denotes the set of time periods when both units *i* and *j* of *Y* are observed

 \Rightarrow For exposition, assume X is fully observed

Target-PCA Estimator

Motivation: Combine PCA objective functions for auxiliary data X and target data Y with a positive target weight γ : For fully observed Y,

Equivalent to (with normalization assumption $\frac{1}{T}F^{\top}F = I_k$)

$$\max_{F} \operatorname{trace} \left(F^{\top} (XX^{\top} + \gamma \cdot YY^{\top})F \right) = \max_{F} \operatorname{trace} \left(F^{\top} Z^{(\gamma)} (Z^{(\gamma)})^{\top} F \right)$$

where $Z^{(\gamma)} = [X, \sqrt{\gamma}Y] \in \mathbb{R}^{T \times (N_x + N_y)}$

Target-PCA:

- 1. Estimate sample covariance matrix $\tilde{\Sigma}^{(\gamma)} \in \mathbb{R}^{(N_x+N_y)\times(N_x+N_y)}$ of $Z^{(\gamma)}$ using only observed entries
- 2. Estimate loadings $\tilde{\Lambda}_x$ and $\tilde{\Lambda}_y$ by applying PCA to $\tilde{\Sigma}^{(\gamma)}$
- 3. Estimate factors \tilde{F} by regressing observed $Z^{(\gamma)}$ on $\tilde{\Lambda}_x$ and $\tilde{\Lambda}_y$
- 4. Estimate common components/impute missing entries $\tilde{C}_{ti} = \tilde{F}_t^{\top}(\tilde{\Lambda}_y)_i$
- \Rightarrow Xiong and Pelger (2022) applied to $Z^{(\gamma)}$

Key Element of Target-PCA Estimator: Target Weight γ

Three special cases:

- $\gamma = 0$: PCA on X
- $\gamma = \infty$: PCA on observed **Y**
- $\gamma = 1$: PCA on concatenated data Z = [X, Y]

Two fundamental effects of target weight γ :

- Consistency effect in factor identification (We need to select γ at the right rate)
- Efficiency effect in the estimation of factors and loadings (We need to select γ at the right scale)

Optimal target weight γ achieves both effects in one-step \Rightarrow Optimal combination of multiple data sets in one step Two Important Effects of Target Weight

Consistency: Select weight γ to identify strong factors from both panels

- Allows to estimate weak factors on Y with target-PCA
- Intuition: Top eigenvalues of XX[⊤] and γYY[⊤] should be of the same scale. Top eigenvalues XX[⊤] and YY[⊤] proportional to N_x and N_y
- \Rightarrow Select $\gamma = O(N_x/N_y)$

Illustrative example: A two-factor model

- Panel Y: Factor 1 strong, but factor 2 weak \Rightarrow Y only identifies factor 1
- Panel X: Factor 2 strong, but factor 1 missing \Rightarrow X only identifies factor 2 Specifically
 - Loadings of Y: factor 1 is strong: $(\Lambda_y)_{i1} \stackrel{i.i.d.}{\sim} (0, \sigma_{\Lambda_y}^2)$; factor 2 is weak: $(\Lambda_y)_{i2} \stackrel{i.i.d.}{\sim} (0, \sigma_{\Lambda_y}^2)$ if $i < N_y^{1/2}$, otherwise, $(\Lambda_y)_{i2} = 0$
 - Loadings of X: only second factor exists $(\Lambda_x)_{i2} \stackrel{i.i.d.}{\sim} (0, \sigma_{\Lambda_x}^2)$ and $(\Lambda_x)_{i1} = 0$
 - $F_{t1} \stackrel{i.i.d.}{\sim} (0, \sigma_F^2), F_{t2} \stackrel{i.i.d.}{\sim} (0, \sigma_F^2), (e_x)_{ti} \stackrel{i.i.d.}{\sim} (0, \sigma_{e_x}^2), (e_y)_{ti} \stackrel{i.i.d.}{\sim} (0, \sigma_{e_y}^2)$

Without errors and missing observations, target-PCA estimates factors from

$$\begin{split} \frac{1}{N_x + N_y} Z^{(\gamma)} Z^{(\gamma)\top} &= \frac{1}{N_x + N_y} \left[X X^\top + \gamma Y Y^\top \right] \\ &= \left[F^{(1)} \quad F^{(2)} \right] \left(\hat{\Sigma}_{\Lambda,t}^{(\gamma)} + o_p(1) \right) \begin{bmatrix} F^{(1)\top} \\ F^{(2)\top} \end{bmatrix} \end{split}$$

where $F^{(1)}, F^{(2)} \in \mathbb{R}^{T}$ denote the vector of the first and second factors and

$$\hat{\Sigma}_{\Lambda,t}^{(\gamma)} = \frac{N_x}{N_x + N_y} \left(\underbrace{\begin{bmatrix} 0 & 0 \\ 0 & \sigma_{\Lambda_x}^2 \end{bmatrix}}_{\Sigma_{\Lambda_x}} + \gamma \frac{N_y}{N_x} \cdot \underbrace{\begin{bmatrix} \sigma_{\Lambda_y}^2 & 0 \\ 0 & \frac{\sigma_{\Lambda_y}^2}{N_y^{1/2}} \end{bmatrix}}_{\Sigma_{\Lambda_y,t}} \right)$$

• Key idea: $\gamma = O(N_x/N_y)$ gives asymptotically full rank of $\hat{\Sigma}_{\Lambda,t}^{(\gamma)}$

- Both eigenvalues in the limit of $\hat{\Sigma}_{\Lambda,t}^{(\gamma)}$ are of the same order
- \Rightarrow Both factors can be identified from $\frac{1}{N_x+N_y}Z^{(\gamma)T}$

 \Rightarrow Naive concatenating $(\gamma = 1)$ can have rank deficiency for $\hat{\Sigma}^{(1)}_{\Lambda,t}$

Efficient weighting of panels:

- First ensure identification of all factors in $m{Y}$, then fine-tune the scaling of γ
- For a target weight γ with the right rate O(N_x/N_y), which scaling constant improves the efficiency?
- \Rightarrow Balance noise level between observed target data and auxiliary data

Illustrative Example: A one-factor model

- Key ingredient: Noise level is different in X and Y
- $F_{t1} \stackrel{i.i.d.}{\sim} (0, \sigma_F^2)$, $(e_x)_{ti} \stackrel{i.i.d.}{\sim} (0, \sigma_{e_x}^2)$, $(e_y)_{ti} \stackrel{i.i.d.}{\sim} (0, \sigma_{e_y}^2)$
- Loadings of Y: $(\Lambda_y)_{i1} \stackrel{i.i.d.}{\sim} (0, \sigma^2_{\Lambda_y})$
- Loadings of X: $(\Lambda_x)_{i1} \stackrel{i.i.d.}{\sim} (0, \sigma^2_{\Lambda_x})$
- Observation pattern:

Entries in Y are missing uniformly at random with $\mathbb{P}(W_{ti}^{Y} = 1) = p$

Proposition

Let $\delta_{N_y,T} = \min(N_y, T)$ and assume $N_y/N_x \to c \in (0, \infty)$. For the one-factor model example, as $T, N_x, N_y \to \infty$, for any *i* and *t*, we have

$$\sqrt{\delta_{N_y,T}} (\Sigma_{C,ti}^{(\gamma)})^{-1/2} \left(\tilde{C}_{ti} - C_{ti}
ight) \stackrel{d}{
ightarrow} \mathcal{N}(0,1),$$

where

$$\begin{split} \Sigma_{C,ti}^{(\gamma)} &= \frac{\delta_{N_y T}}{T} \frac{\sigma_{e_y}^2}{p \sigma_F^2} F_t^2 + 2 \frac{\delta_{N_y T}}{T} \left(\frac{1}{p} - 1\right) (\Lambda_y)_i^2 F_t^2 \\ &+ \frac{\delta_{N_y T}}{N_y} (\Lambda_y)_i^2 \left(\sigma_{\Lambda_x}^2 + \gamma \frac{N_y}{N_x} p \sigma_{\Lambda_y}^2\right)^{-2} \left(\frac{N_y}{N_x} \sigma_{\Lambda_x}^2 \sigma_{e_x}^2 + \gamma^2 \frac{N_y^2}{N_x^2} p \sigma_{\Lambda_y}^2 \sigma_{e_y}^2\right) \end{split}$$

- The optimal γ that minimizes $\sum_{C,ti}^{(\gamma)}$ is $\gamma^* = \sigma_{e_x}^2/\sigma_{e_y}^2$ for any i and t
- Interpretation: Up-weight the panel with smaller idiosyncratic error to improve estimation efficiency (similar to GLS)

Asymptotic Results

Consistency

Theorem 1: Consistency

Let $\delta_{N_y,T} = \min(N_y,T)$ and suppose that $N_y/N_x \to c \in [0,\infty)$. Under general observation pattern and approximate factor model \bigcirc assumptions), for $T, N_x, N_y \to \infty$:

1. If $\gamma = r \cdot N_x / N_y$ with some constant r, then $\Sigma_{\Lambda,t}^{(\gamma)} := \lim_{N_x, N_y \to \infty} \frac{N_x}{N_x + N_y} \left(\Sigma_{\Lambda_x} + \gamma \frac{N_y}{N_x} \Sigma_{\Lambda_y, t} \right) \text{ is positive definite, and}$ $\delta_{N_y, T} \left(\frac{1}{N_x + N_y} \sum_{i=1}^{N_x + N_y} \left\| \tilde{\Lambda}_i^{(\gamma)} - H^{(\gamma)} \Lambda_i^{(\gamma)} \right\|^2 \right) = O_p(1)$ $\delta_{N_y, T} \left(\frac{1}{T} \sum_{t=1}^{T} \left\| \tilde{F}_t - (H^{(\gamma)\top})^{-1} F_t \right\|^2 \right) = O_p(1)$

This implies that \tilde{C}_{ti} of Y is consistent.

2. If $\gamma \neq r \cdot N_x/N_y$ for any constant r, then $\sum_{\Lambda,t}^{(\gamma)}$ may not be positive definite. If $\sum_{\Lambda,t}^{(\gamma)}$ is not positive definite, then \tilde{F}_t is inconsistent for some t

Theorem 2: Asymptotic Normality

Let $\delta_{N_y,T} = \min(N_y,T)$ and suppose that $N_y/N_x \to c \in [0,\infty)$ and $\gamma = r \cdot N_x/N_y$ for some constant r. Under general observation pattern and approximate factor model \bullet assumptions, as $T, N_x, N_y \to \infty$:

• Loadings of Y: for $\sqrt{T}/N_y \to 0$,

$$\sqrt{T}(\Sigma_{\Lambda_{y},i}^{(\gamma)})^{-1/2}\left((H^{(\gamma)})^{-1}(\tilde{\Lambda}_{y})_{i}-(\Lambda_{y})_{i}\right)\stackrel{d}{\rightarrow}\mathcal{N}(0,I_{k}),$$

where $\Sigma_{\Lambda_{y},i}^{(\gamma)} = \Sigma_{F}^{-1} (\Sigma_{\Lambda}^{(\gamma)})^{-1} (\Gamma_{\Lambda_{y},i}^{(\gamma),\text{obs}} + \Gamma_{\Lambda_{y},i}^{(\gamma),\text{miss}}) (\Sigma_{\Lambda}^{(\gamma)})^{-1} \Sigma_{F}^{-1}$

• Factors: for
$$\sqrt{T}/N_y \rightarrow 0$$
 and $\sqrt{N_y}/T \rightarrow 0$,

$$\sqrt{\delta_{N_y,T}} (\Sigma_{F,t}^{(\gamma)})^{-1/2} \left(H^{(\gamma)\top} \tilde{F}_t - F_t \right) \stackrel{d}{\to} \mathcal{N}(0, I_k)$$

where $\Sigma_{F,t}^{(\gamma)} = (\Sigma_{\Lambda,t}^{(\gamma)})^{-1} \left[\frac{\delta_{N_y,T}}{N_y} \Gamma_{F,t}^{(\gamma),obs} + \frac{\delta_{N_y,T}}{T} \Gamma_{F,t}^{(\gamma),miss} \right] (\Sigma_{\Lambda,t}^{(\gamma)})^{-1}$

• Common components of Y: for $\sqrt{T}/N_y \rightarrow 0$ and $\sqrt{N_y}/T \rightarrow 0$,

$$\sqrt{\delta_{N_y,T}}(\Sigma_{C,ti}^{(\gamma)})^{-1/2}(ilde{C}_{ti}-C_{ti}) \stackrel{d}{
ightarrow} \mathcal{N}(0,1)$$

 р	$N_x/N_v = 1$			$N_x/N_y = 4$		
	NR=0.25	NR=1	NR=4	NR=0.25	NR=1	NR=4
60%	0.25	1.00	4.00	0.25	1.00	4.00
75%	0.25	1.00	4.00	0.25	1.00	4.00
90%	0.25	1.00	4.00	0.25	1.00	4.00
60%	0.61	1.75	4.25	1.95	5.09	7.00
75%	0.42	1.53	4.35	1.06	3.62	6.12
90%	0.28	1.15	4.18	0.40	1.62	4.61
60%	0.55	1.96	4.66	1.69	5.52	7.84
75%	0.39	1.46	4.34	0.92	3.23	5.84
90%	0.28	1.12	4.13	0.40	1.56	4.50
60%	0.70	2.16	4.96	2.24	6.20	8.63
75%	0.47	1.48	4.30	1.30	3.56	5.90
90%	0.32	1.12	4.04	0.61	1.91	4.50

Optimal γ^* for Different Missing Patterns and Noise Ratios

- ⇒ Missing at random: Optimal γ^* only depends on NR (noise ratio), but not on N_x/N_y and fraction of observed entries p
- ⇒ Other observation patterns: Optimal γ^* depends on NR, N_x/N_y , p and other quantities related to correlations in observation pattern

Empirical Results

Empirical Study 1 – Comparison with Benchmark Methods

Goal: Compare imputation accuracy of target-PCA with benchmark methods

- XP_Y: PCA on Y only (Xiong and Pelger 2022)
- XP_Z: PCA on Z = [X, Y] (Xiong and Pelger 2022)
- SE-PCA: Combining factors extracted from separate PCAs on X and Y

Data: 120 fully observed monthly U.S. macroeconomic indicators from FRED-MD from 01/1960 to 12/2020

- Target Y: 19 series in interest and exchange rates category
- Auxiliary X: 101 series from the other 7 categories

Mask Y according to four types of missing patterns

- Missing at random
- Block missing
- Low-frequency observation
- Censoring

Compare the relative MSE $\sum_{i,t} (\tilde{C}_{it} - Y_{it})^2 / \sum_{i,t} Y_{it}^2$ on the masked entries

Observation Pattern (Missing Ratio)	factor number	T-PCA	XP _Y	XP _Z	SE-PCA
missing at random (40%)	k = 1 k = 2 k = 3 k = 4 k = 5	0.787 0.486 0.483 0.491 0.479	0.796 0.503 0.635 0.813 1.363	0.986 0.969 0.927 0.793 0.613	0.806 0.499 0.627 0.795 1.355
block missing (19%)	k = 1 k = 2 k = 3 k = 4 k = 5	0.958 0.700 0.713 0.741 0.786	1.018 0.805 0.796 0.783 2.601	0.971 0.961 0.974 0.974 0.935	1.003 0.852 0.803 0.781 2.584
low-frequency (92%)	k = 1 k = 2 k = 3 k = 4 k = 5	0.942 0.927 0.926 0.910 1.017	0.949 1.140 1.213 1.212 1.251	1.019 0.931 0.936 1.095 1.092	1.009 1.149 1.223 1.234 1.280
censoring (40%)	k = 1 $k = 2$ $k = 3$ $k = 4$ $k = 5$	0.927 0.881 0.892 0.882 0.869		0.996 0.996 0.993 0.990 0.984	0.995 0.994 0.992 0.987 0.981

 \Rightarrow Target-PCA provides the most precise imputation for all cases

Quarterly observed GDP vs. monthly imputed GDP by target-PCA

- ⇒ Target-PCA captures the (unknown and unobserved) variation in between two quarterly GDP observations using monthly observed auxiliary data
- ⇒ Target-PCA can be used for nowcasting low-frequency macro time-series

Conclusion

Conclusion

Target-PCA:

- Novel method to estimate a latent factor model for a target panel with missing observations using supplementary panel data
- Transfer learning perspective: Optimally extracts information from supplementary data that is useful for the target
- Easy-to-adopt method to estimate factor structure and impute missing observations that is broadly applicable
- Benefits of target-PCA:
 - 1. Estimation of weak factors in target panel
 - 2. Efficient combination of multiple panels
 - 3. Estimation of factor structure under challenging missing patterns
- Asymptotic inferential theory under very general assumptions on the approximate factor model and missing patterns:
 - \Rightarrow Provides guidance for the optimal selection of γ^*

Appendix

Appendix

We present the assumptions of a simplified factor model which captures the main insight of the general approximate factor model

```
Assumption S1: Simplified Factor Model

There exists a constant C < \infty such that

1. Factors: F_t \stackrel{\text{i.i.d.}}{\sim} (0, \Sigma_F) and \mathbb{E} ||F_t||^4 \leq C for any t.

2. Loadings: (\Lambda_x)_i \stackrel{\text{i.i.d.}}{\sim} (0, \Sigma_{\Lambda_x}), where \Sigma_{\Lambda_x} is positive semidefinite.

(\Lambda_y^{\text{full}})_i \stackrel{\text{i.i.d.}}{\sim} (0, \Sigma_{\Lambda_y}) and the loading of the j-th factor

(\Lambda_y)_{ij} = (\Lambda_y^{\text{full}})_{ij} \cdot (U_y)_{ij} where \Sigma_{\Lambda_y}^{\text{full}} is positive definite, and Bernoulli

random variable (U_y)_{ij} \in \{0, 1\} is independent in i with \mathbb{P}((U_y)_{ij} = 1) = p_j

for some p_j \in [0, 1]. Furthermore, \mathbb{E} ||(\Lambda_x)_i||^4 \leq C, \mathbb{E} ||(\Lambda_y)_i||^4 \leq C and

\Sigma_{\Lambda_x} + \Sigma_{\Lambda_y} is positive definite, where \Sigma_{\Lambda_y} = \mathbb{E}[(\Lambda_y)_i (\Lambda_y)_i^T].
```

- 3. Idiosyncratic errors: $(e_x)_{ti} \stackrel{\text{i.i.d.}}{\sim} (0, \sigma_{e_x}^2), (e_y)_{ti} \stackrel{\text{i.i.d.}}{\sim} (0, \sigma_{e_y}^2),$ $\mathbb{E}(e_x)_{ti}^8 \leq C, \mathbb{E}(e_y)_{ti}^8 \leq C$, and the ratio $\sigma_{e_x}/\sigma_{e_y}$ is bounded away from 0.
- 4. Independence: $F, \Lambda_x, \Lambda_y, e_x$ and e_y are independent.

Assumption S2: Moments of Observation Pattern and Simplified Factor Model

- 1. Missing pattern: for any *i*, there exist constants $\omega_i^{(1)}$, $\omega_i^{(2,1)}$, $\omega_i^{(2,2)}$, $\omega_i^{(2,3)}$ and $\omega_i^{(3)}$, such that $\frac{1}{N_y} \sum_{j=1}^{N_y} \frac{q_{ij}}{q_{ii}q_{ij}} \stackrel{P}{\to} \omega_i^{(1)}$, $\frac{1}{N_y^2} \sum_{j,l=1}^{N_y} \frac{q_{ii,jl}}{q_{ii}q_{il}} \stackrel{P}{\to} \omega_i^{(2,1)}$, $\frac{1}{N_y^2} \sum_{j,l=1}^{N_y} \frac{q_{ij,il}}{q_{ij}q_{il}} \stackrel{P}{\to} \omega_i^{(2,2)}$, $\frac{1}{N_y^2} \sum_{j,l=1}^{N_y} \frac{q_{ij,il}}{q_{ij}q_{il}} \stackrel{P}{\to} \omega_i^{(2,3)}$, and $\frac{1}{N_y^3} \sum_{j,l,h=1}^{N_y} \frac{q_{ii,jh}}{q_{ii}q_{jh}} \stackrel{P}{\to} \omega_i^{(3)}$. Furthermore, there exist constants $\omega^{(1)}$, $\omega^{(2)}$ and $\omega^{(3)}$, such that $\frac{1}{N_y} \sum_{i=1}^{N_y} \omega_i^{(1)} \stackrel{P}{\to} \omega^{(1)}$, $\frac{1}{N_y} \sum_{i=1}^{N_y} \omega_i^{(3)} \stackrel{P}{\to} \omega^{(3)}$, and $\frac{1}{N_y} \sum_{i=1}^{N_y} \omega_i^{(2,1)} = \frac{1}{N_y} \sum_{i=1}^{N_y} \omega_i^{(2,2)} \stackrel{P}{\to} \omega^{(2)}$.
- 2. Systematic loadings for observed data: For any t, $\frac{1}{N_y} \sum_{i=1}^{N_y} W_{ti}^{Y}(\Lambda_y)_i (\Lambda_y)_i^{\top} \xrightarrow{P} \Sigma_{\Lambda_y,t} \text{ and } \Sigma_{\Lambda_x} + \Sigma_{\Lambda_y,t} \text{ is positive definite.}$

Proposition

Under the data generating process and observation pattern described for the two-factor model, let $\delta_{N_y,T} = \min(N_y, T)$ and assume that $N_y/N_x \rightarrow 0$. Target-PCA with $\gamma = r \cdot N_x/N_y$ for some constant $r \in (0, \infty)$ can consistently estimate the latent factors. As $T, N_x, N_y \rightarrow \infty$, there exists some rotation matrix H such that

$$\delta_{N_y,T}\left(rac{1}{T}\sum_{t=1}^T \left\| ilde{F}_t - HF_t
ight\|^2
ight) = O_
ho(1).$$

If $\gamma = O(1)$, then \tilde{F}_t is inconsistent.

Effect 2: Simulation Results of Efficiency Effect

- The optimal γ^* only varies with $\sigma_{e_x}/\sigma_{e_y}$ but not N_x/N_y in this missing at random example
- The optimal γ* that minimizes the relative MSE coincides with the optimal γ* that minimizes the asymptotic variance
- \Rightarrow Use inferential theory to select the optimal γ^*

Simulation

- Comparison between target-PCA method and three benchmark methods
 - T-PCA: Our target-PCA method
 - XP_Y: PCA method (Xiong and Pelger (2020)) using only target Y
 - XP_Z: PCA method (Xiong and Pelger (2020)) using directly concatenated panel Z = [X, Y]
 - SE-PCA: Separate PCAs method combining factors separately extracted from X and Y as the factor estimators
- Two-factor model with three missing mechanisms:
 - Missing at random
 - Low-frequency observation
 - Missing depends on loadings
 Extrine in Y and mission and different on Y

Entries in Y are missing conditional on $S_i = \mathbb{1}(|(\Lambda_y)_{i2}| > \text{threshold})$

• We compare the relative mean square error (relative MSE) for the observed, missing and all entries of the common component of *Y*:

relative
$$MSE_{\mathcal{M}} = \frac{\sum_{(t,i)\in\mathcal{M}} (\tilde{C}_{ti} - C_{ti})^2}{\sum_{(t,i)\in\mathcal{M}} (C_{ti})^2}$$

Observation Pattern	${\mathcal M}$	T-PCA	XP _Y	XP _Z	SE-PCA
	obs	0.182	0.407	0.224	0.531
	miss	0.179	0.411	0.222	0.563
Sec. 2	all	0.181	0.409	0.223	0.547
	obs	0.279	-	0.844	1.052
	miss	1.011	-	1.124	1.104
	all	0.645	-	0.980	1.077
	obs	0.213	0.234	0.256	0.276
	miss	0.247	0.290	0.281	0.352
	all	0.239	0.276	0.275	0.335

- Target-PCA estimator is robust in different settings
- Target-PCA estimator is efficient and achieves the smallest relative MSE compared with other three methods in most cases

Empirical Study 1 - Comparison with Benchmark Methods

Illustration of the performance of different methods:

Figure 1: Real time series v.s. imputed time series of the spread between 3-month treasury and Fed Funds rate