State-Varying Factor Models of Large Dimensions

Markus Pelger and Ruoxuan Xiong

Stanford University

2019 SIAM Financial Mathematics and Engineering
June 7th, 2019
Motivation

- Conventional large-dimensional latent factor model assumes the exposures to factors (factor loadings) are constant over time.
- Observation: Asset prices’ exposures to the market (and other risk factors) are time-varying.
- Example: Term-structure factor exposure is different in recessions and booms.

Figure: PCA Factor Loadings for Treasuries in Boom and Recession
This paper

Research Question:

1. Find latent factors and loadings that are state-dependent.
2. Test if factor model is state-dependent.

Key elements of estimator

1. Statistical factors instead of pre-specified (and potentially miss-specified) factors
2. Uses information from large panel data sets: Many cross-section units with many time observations
3. Factor structure can be time-varying as a general non-linear function of the state process
Contribution of this paper

Contribution

- Theoretical
 - PCA estimator combined with kernel projection for factors, state-varying factor loadings and common components
 - Inferential theory for estimators for $N, T \to \infty$:
 - consistency
 - asymptotic normal distribution and standard errors
 - Test for state-dependency of latent factor model
 - Generalized correlation test statistic detects for which states model changes
 - Non-standard superconsistency

- Empirical
 - State-dependency of factor loadings in US Treasury securities
Literature (partial list)

- Large-dimensional factor models with constant loadings
 - Bai (2003): Distribution theory
 - Fan et al. (2013): Sparse matrices in factor modeling

- Large-dimensional factor models with time-varying loadings
 - Su and Wang (2017): Local time-window
 - Pelger (2018), Aït-Sahalia and Xiu (2017): High-frequency
 - Fan et al. (2016): Projected PCA

- Large-dimensional factor models with structural breaks
 - Stock and Watson (2009): Inconsistency
The Model

State-varying factor model

- X_{it} is the observed data for the i-th cross-section unit at time t
- State variable S_t at time t

$$X_{it} = \Lambda_i(S_t) \begin{pmatrix} F_t & e_{it} \end{pmatrix} \begin{pmatrix} 1 \\ r \end{pmatrix} \begin{pmatrix} r \\ 1 \end{pmatrix}$$

- N cross-section units (large), time horizon T (large)
- r systematic factors (fixed)

- Factors F, loadings $\Lambda(S_t)$, idiosyncratic components e are unknown
- Data X and state process S_t observed
The Model

Examples (with one factor) equivalent to multi-factor representation

- Loadings linear in state: \(\Lambda_i(S_t) = \Lambda_{i,1} + \Lambda_{i,2}S_t \)

\[
X_{it} = \underbrace{\Lambda_{i,1} F_t}_{F_{t,1}} + \underbrace{\Lambda_{i,2} (S_t F_t)}_{F_{t,2}} + e_{it}
\]

- Loadings nonlinear in discrete state: \(\Lambda_i(S_t) = g_i(S_t), \ S_t \in \{s_1, s_2\} \)

\[
X_{it} = \underbrace{g_i(s_1)}_{\Lambda_{i,1}} \underbrace{1_{\{S_t=s_1\}} F_t}_{F_{t,1}} + \underbrace{g_i(s_2)}_{\Lambda_{i,2}} \underbrace{1_{\{S_t=s_2\}} F_t}_{F_{t,2}} + e_{it}
\]

Our model

- Loadings nonlinear in non-discrete state: \(\Lambda_i(S_t) = g_i(S_t) \) with continuous distribution function for \(S_t \)

\(\Rightarrow \) Cumbersome/No multi-factor representation
The Model: Main Assumptions

Approximate state-varying factor model

- Systematic factors explain a large portion of the variance
- Idiosyncratic risk is nonsystematic: Weak time-series and cross-sectional correlation
- State: recurrent (infinite observations around the state to condition on) with continuous stationary PDF
- Factor Loadings: deterministic functions of the state and the functions are Lipschitz continuous (observations in the nearby state are useful)
 \[\exists C, \| \Lambda_i(s + \Delta s) - \Lambda_i(s) \| \leq C |\Delta s| \]
The Model: Extension

Robustness to noise in state process

- State process is observed with noise:

\[X_t = \Lambda(S_t)F_t + \epsilon_t + \psi_t + e_t \]

- Under weak conditions noise can be treated like idiosyncratic noise.

⇒ All results hold!

Missing relevant states

- Assume loadings depend on multiple states but we only condition on a subset of them.

- State-varying factor model explains strictly more variance than constant loading model.

⇒ More parsimonious representation even under misspecification.
The Model: Intuition

Intuition for Estimation

- **Constant loadings:**
 Loadings are principal components of covariance matrix
 \[
 \text{Cov}(X_t) = \Lambda \text{Cov}(F_t) \Lambda^\top + \text{Cov}(e_t).
 \]

- **State-varying loadings:**
 Loadings for \(S_t = s \) are principal components of covariance matrix conditioned on the state \(S_t = s \):
 \[
 \text{Cov}(X_t|S_t = s) = \Lambda(s) \text{Cov}(F_t|S_t = s) \Lambda(s)^\top + \text{Cov}(e_t|S_t = s).
 \]

\[\Rightarrow\text{ Intuition: Estimate conditional covariance matrix } \text{Cov}(X_t|S_t = s) \text{ with kernel projection and apply PCA to it.}\]
The Model: Nonparametric Estimation

Objective function and nonparametric estimation

The estimators minimize mean squared error conditioned on state:

\[
\hat{F}^s, \hat{\Lambda}(s) = \arg \min_{F^s, \Lambda(s)} \frac{1}{NT(s)} \sum_{i=1}^{N} \sum_{t=1}^{T} K_s(S_t)(X_{it} - \Lambda_i(s)'F_t)^2
\]

- Kernel function \(K_s(S_t) = \frac{1}{h} K \left(\frac{S_t - s}{h} \right) \) (e.g. \(K(u) = \frac{1}{\sqrt{2\pi}} \exp\{-\frac{u^2}{2}\} \))
- \(T(s) = \sum_{t=1}^{T} K_s(S_t) \), \(\frac{T(s)}{T} \overset{d}{\to} \pi(s) \) (stationary density of \(S_t = s \))
- Bandwidth parameter \(h \) determines local “state window”
The Model: Nonparametric Estimation

Nonparametric estimation

- Project square root of kernel on the data and factors
 \[X^s_{it} = K^{1/2}_s(S_t)X_{it} \quad F^s_t = K^{1/2}_s(S_t)F_t \]

- PCA solves optimization problem
 \[\hat{F}^s, \hat{\Lambda}(s) = \arg \min_{F^s, \Lambda(s)} \frac{1}{NT(s)} \sum_{i=1}^N \sum_{t=1}^T (X^s_{it} - \Lambda_i(s)'F^s_t)^2 \]

⇒ Apply PCA to conditional covariance matrix
- \(\hat{F}^s \) are the eigenvectors corresponding to top \(k \) eigenvalues of estimated conditional covariance matrix
 \[\frac{1}{NT(s)}(X^s)'X^s \]
- \(\hat{\Lambda}(s) \) are coefficients from regressing \(X^s \) on \(\hat{F}^s \)
The Model: Nonparametric Estimation

Major challenge: Bias term

\[
X^s_t = \Lambda(S_t)F^s_t + e^s_t = \underbrace{\Lambda(s)F^s_t + e^s_t}_{\bar{X}^s_t} + \underbrace{(\Lambda(S_t) - \Lambda(s))F^s_t}_{\Delta X^s_t}.
\]

- \(\Delta X^s_{it} = \Lambda_i(S_t)F^s_t - \Lambda_i(s)F^s_t = O_p(h)\)
- Kernel bias complicates problem and lowers convergence rates

Theorem: Consistency

Assume \(N, Th \to \infty\) and \(\delta_{NT,h}h \to 0\) with \(\delta_{NT,h} = \min(\sqrt{N}, \sqrt{Th})\):

\[
\delta_{NT,h}^2 \left(\frac{1}{T} \sum_{t=1}^{T} \| \hat{F}^s_t - (H^s)^T F^s_t \|^2 \right) = O_p(1)
\]

\[
\delta_{NT,h}^2 \left(\frac{1}{N} \sum_{i=1}^{N} \| \hat{\Lambda}_i(s) - (H^s)^{-1}\Lambda_i(s) \|^2 \right) = O_p(1)
\]

for known full rank matrix \(H^s\)
Limiting Distribution of Estimated Factors

Theorem (Factors)

Assume \(\sqrt{Nh}/(Th) \to 0 \), \(Nh \to \infty \) and \(Nh^2 \to 0 \). Then

\[
\sqrt{N} \left(K_s^{-1/2}(S_t)\hat{F}^s_t - (H^s)'F^s_t \right)
\]

\[
= (V^s_r)^{-1}(\hat{F}^s)'F^s_s \frac{1}{T} \frac{1}{\sqrt{N}} \sum_{i=1}^{N} \Lambda_i(s)e_{it} + o_p(1)
\]

\[\xrightarrow{D} N(0, (V^s)^{-1}Q^s_t(Q^s)'(V^s)^{-1})\]

- Rotation matrix \(H^s = \frac{\Lambda(s)'}{N} \frac{\Lambda(s)}{F^s_s} \frac{\hat{F}^s}{T} (V^s_r)^{-1} \)
- \(K_s^{-1/2}(S_t)\hat{F}^s_t \) converges to some rotation of \(F_t \) at rate \(\sqrt{N} \)
- Efficiency mainly depends on asymptotic distribution of \(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \Lambda_i(s)e_{it} \)
Theorem (Loadings)

Assume $\sqrt{Th}/N \to 0$, $Th \to \infty$, and $Th^3 \to 0$. Then

$$
\sqrt{Th}(\hat{\Lambda}_i(s) - (H^s)^{-1}\Lambda_i(s)) = (V_r^s)^{-1}(\hat{F}^s)'F^s \Lambda(s)'\Lambda(s) \frac{\sqrt{Th}}{N} \frac{T}{T(s)} \sum_{t=1}^{T} F_t^s e_{it}^s + o_p(1)
$$

$$
\overset{D}{\to} \mathcal{N}(0, ((Q^s)')^{-1}\Phi_{i}^s(Q^s)^{-1})
$$

\begin{itemize}
 \item $\hat{\Lambda}_i(s)$ converges to some rotation of $\Lambda_i(s)$ at rate \sqrt{Th}
 \item Efficiency mainly depends on asymptotic distribution of $\frac{\sqrt{Th}}{T(s)} \sum_{t=1}^{T} F_t^s e_{it}^s = \frac{\sqrt{Th}}{T(s)} \sum_{t=1}^{T} K_s(S_t)F_t e_{it}$
\end{itemize}
Asymptotic Results

Limiting Distribution of Common Component

Theorem (Common Components)

Assume $Nh \to \infty$, $Th \to \infty$, $Nh^2 \to 0$ and $Th^3 \to 0$. Then for each i

$$
\delta_{NT,h}(\hat{C}_{it,s} - C_{it,s}) = \frac{\delta_{NT,h}}{\sqrt{N}} \Lambda_i(s)' \sum_{s}^{-1} \left(\frac{1}{\sqrt{N}} \sum_{i=1}^{N} \Lambda_i(s)e_{it} \right)
$$

$$
+ \frac{\delta_{NT,h}}{\sqrt{Th}} F_t' \sum_{F|s}^{-1} \left(\frac{\sqrt{Th}}{T(s)} \sum_{t=1}^{T} F_t^s e_{it}^s \right) + o_p(1)
$$

- $\delta_{NT,h} = \min(\sqrt{N}, \sqrt{Th})$
- Define $C_{it,s} = F_t' \Lambda_i(s)$ and $\hat{C}_{it,s} = (\frac{\hat{F}_t^s}{K^{1/2}_{s}(S_t)})' \hat{\Lambda}_i(s)$
- If $N/(Th) \to 0$, $\Lambda_i(s)e_{it}$ dominates
- If $Th/N \to 0$, $F_t^s(t)e_{it}^s$ dominates

Test for constancy: Generalized correlation test

Consider loadings in two states $\Lambda_1 = \Lambda(s_1)$ and $\Lambda_2 = \Lambda(s_2)$. Test for

$\mathcal{H}_0 : \Lambda_1 = \Lambda_2 G$ for some full rank square matrix G

$\mathcal{H}_1 : \Lambda_1 \neq \Lambda_2 G$ for any full rank square matrix G

- Generalized correlation, defined as ρ invariant of G

$$\rho = \text{trace} \left\{ \left(\frac{\Lambda_1^T \Lambda_1}{N} \right)^{-1} \left(\frac{\Lambda_1^T \Lambda_2}{N} \right) \left(\frac{\Lambda_2^T \Lambda_2}{N} \right)^{-1} \left(\frac{\Lambda_2^T \Lambda_1}{N} \right) \right\}$$

- $\hat{\rho}$ estimated ρ and r is #factors

- Equivalent to test $\mathcal{H}_0 : \rho = r$ and $\mathcal{H}_1 : \rho < r$
Theorem: Generalized correlation test

Assume $\sqrt{N}/(Th) \to 0$, $Nh \to \infty$, $Th \to \infty$, $\sqrt{Th}/N \to 0$, $Nh^2 \to 0$ and $NTh^3 \to 0$:

$$\sqrt{NTh}(\hat{\rho} - r - \hat{\xi}^\top \hat{b}) \xrightarrow{d} N(0, \Omega)$$

- $\hat{\xi}^\top b$ bias term with feasible estimates \hat{b} and $\hat{\xi}$
- feasible estimator for asymptotic covariance $\hat{\Omega}$
- Superconsistent rate \sqrt{NTh} (corner case)
- $h \in [1/T^{1/2}, 1/T^{3/4}]$: combinations of N and T exist to satisfy the rate conditions
Empirical Applications

- US Treasury Securities Yields from 2001-07-31 to 2016-12-01: \(N = 11, \ T = 2832 \): 1, 3, 6 mo., 1, 2, 3, 5, 7, 10, 20, 30 yr.
- State: Log-normalized VIX
- Generalized correlation: \(\hat{\rho}(\Lambda(Boom), \Lambda(Recession)) = 2.6352 \Rightarrow \text{reject} \ \rho \approx 3 \text{ for } \Lambda(Boom) \approx \Lambda(Recession) \)

(a) Log-normalized VIX
(b) Proportion of variance explained
Empirical Applications

- Long term bonds have higher weights in the level factor in high VIX/recession

Figure: Factor Loading to the Level Factor (1st Factor)

(a) Log-normalized VIX
(b) Recession Indicator
In high vix/recession: short term bonds more negative and long term bonds less positive

Figure: Factor Loading to the Slope Factor (2nd Factor)

- (a) Log-normalized VIX
- (b) Recession Indicator
Empirical Applications

- Minimum portfolio weight in the curvature factor shifts to shorter term bond in high vix/recession

Figure: Factor Loading to the Curvature Factor (3rd Factor)
Empirical Applications: Test Constancy of Loadings

- Loadings in low vix are different from loadings in high vix (red region)

Figure: Generalized Correlation Test of Estimated Loadings in Two States under Null Hypothesis (H_0: Loadings in Two States are Constant)
Daily stocks returns (01/2004 to 12/2016): $N = 332$ and $T = 3253$

State: Log-normalized VIX

⇒ Constant loading model needs roughly three more factors to explain the same variation in- and out-of-sample.

Figure: Variation explained by state-varying and constant loading model.
S&P500 Stock Returns

Figure: Out-of-sample Sharpe ratio of mean-variance efficient portfolio based on latent factors of the state-varying and constant loading model.

⇒ State-varying factor models capture more pricing information than constant-loading factors
Methodology

- Estimators for latent factors, loadings and common components where loadings are state-dependent
- We combine large dimensional factor modeling with nonparametric estimation
- Asymptotic properties of the estimators
- Constancy test for estimated state-varying factor loadings

Empirical Results

- We discover the movements of factor loadings by state values in the US Treasury Securities and Equity Markets
- Promising empirical results in other data sets
Data Generating Process for Simulations

- We generate data from a one-factor model

\[X_{it} = \Lambda_i(S_t)F_t + e_{it} \]

- Factor: \(F_t \sim N(0, 1) \)
- State: Ornstein–Uhlenbeck (OU) process (mean-reverting)
 \[S_t = \theta(\mu - S_t)dt + \sigma dW_t, \text{ where } \theta = 1, \mu = 0.2, \text{ and } \sigma = 1 \]
 - stochastic volatility in financial data
- Loading: \(\Lambda_i(S_t) = \Lambda_{0i} + \frac{1}{2} S_t \Lambda_{1i} + \frac{1}{4} S_t^2 \Lambda_{2i} + \frac{1}{8} S_t^3 \Lambda_{3i}, \text{ where } \Lambda_{0i}, \Lambda_{1i}, \Lambda_{2i}, \Lambda_{3i} \sim N(0, 1) \)
- Idiosyncratic errors: IID/Heteroskedasticity/Cross sectional dependence
Simulation of CLT for Estimated Factors

\[\sqrt{N}(\hat{\Gamma}_t^s)^{-1/2}(\hat{Q}^s)^{-1}\hat{V}^s \left(K_s^{-1/2}(S_t)\hat{F}_t^s - (H^s)'F_t \right) \xrightarrow{d} N(0, I_r) \]

Figure: Comparison between simulated normalized factor distribution and standard normal distribution

![Histograms]
Simulation of CLT for Estimated Loadings

\[\sqrt{T} h(\hat{\Phi}_i^s)^{-1/2}(\hat{Q}^s)'(\hat{\Lambda}(s) - (H^s)^{-1}\Lambda(s)) \xrightarrow{d} N(0, I_r) \]

Figure: Comparison between simulated normalized loading distribution and standard normal distribution
Simulation of CLT for Common Component

\[
\left(\frac{1}{N} \hat{V}_{it,s} + \frac{1}{Th} \hat{W}_{it,s} \right)^{-1/2} \left(\hat{C}_{it,s} - C_{it,s} \right) \overset{d}{\rightarrow} N(0, I_r)
\]

Figure: Comparison between simulated normalized common component distribution and standard normal distribution

Markus Pelger and Ruoxuan Xiong
Simulation of CLT for Estimated Generalized Correlation

- Loading: constant with the state $\Lambda_i(S_t) = \Lambda_0i$
- $\sqrt{NTh}(\hat{\rho} - r - \hat{\xi}^T \hat{b})/(\hat{\Omega})^{1/2} \overset{d}{\rightarrow} N(0, 1)$

Figure: Comparison between simulated normalized estimated generalized correlation distribution and standard normal distribution
Recover Functional Form of Loadings vs. State

\[\Lambda_i(S_t) = \Lambda_{0i} + \frac{1}{2} S_t \Lambda_{1i} + \frac{1}{4} S_t^2 \Lambda_{2i} + \frac{1}{8} S_t^3 \Lambda_{3i} \]

Figure: Loading as a function of the State