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Motivation

Goal: Estimate latent factor model and impute missing values for large
dimensional panel data with missing data
e Large dimensional panel data with missing entries is prevalent:
e.g. macroeconomic data, financial data, recommendation system

e Latent factor model is commonly used to summarize large panels and

impute missing values

Problem: Panel is not informative enough to estimate the factor structure:
e Observed data insufficient to estimate full factor model:

e Some times are never observed in panel, e.g. low-frequency data
e Missingness depends on factor structure, e.g. selection bias

e \Weak factor signals: Factors affect only small subset of units

e Weak factors not identified by principal component analysis (PCA)

Our Solution: Target-PCA optimally combines information from multiple

auxiliary panels to estimate factor structure in target panel



A Motivating Example: Low-Frequency Macroeconomic Data

Question: How to obtain high frequency macroeconomic time series that are
only observed at lower frequency?

e Naive imputation by lagged values cannot capture fluctuation between
observations

e Latent factors for time periods without observations cannot be estimated

Low-frequency observation pattern: Rows denote time periods, columns denote
macroeconomic variables (dark color: observed, light color: missing)



This Paper: Use Auxiliary Data

Use auxiliary data that share some common factors with target data, e.g.,

e Target data: Quarterly observed macroeconomic time-series

e Auxiliary data: Daily observed price-based information (stock returns)

Target data Auxiliary data

Learn the latent factor structure for target data by optimally weighting auxiliary
and target data

e |dentify weak signals in target data

e Increase estimation efficiency of common latent factors



Key Challenges

Challenge: How to optimally use auxiliary data?

e Factor model difference

Auxiliary data may not contain all factors for the target

= Auxiliary data not sufficient to learn factor model
e Dimension difference

Auxiliary data may have much more units than target data

= Too low weight for target panel when simply concatenating panels
e Missing pattern issues

Missing pattern can depend on factor model

Missing pattern affects the effective sample size

This paper: Novel method Target-PCA:

Optimally combines auxiliary and target data to estimate latent factor model
and impute missing entries for the target



Contribution

Methodology:

=

=

New setup to estimate latent factors for target data using auxiliary data

Identify two effects in combining auxiliary with target data:
(1) detection of weak signals, (2) efficient estimation

Target-PCA: A novel estimator for latent factor model using the idea of
transfer learning, and simultaneously achieves the two effects

Inferential theory for target-PCA under very general assumptions on the
approximate factor model and missing pattern

Easy-to-use and widely applicable estimator under general assumptions!

Importance: Imputation, factor estimation, causal inference

Empirics:

Demonstrate superior performance of target-PCA, compared to
benchmarks, to impute unbalanced macroeconomic panel
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Model and Estimation



Model Setup: Approximate Factor Model for Target and Auxiliary Data

Approximate factor models with k common factors (union of all factors)
Target data: N, units over T time periods

Yi= F' (A)i i and Y = _F A
t ¢ (Ay)i+(e)e an T =N oy

Ixk kxl TXNy  TXk N, TxN,
Auxiliary data: /. units over T time periods

Xi= F' (A)i+(e)s and X = F Al + e
NN ~ S~ =~
Ixk kx1 T X Ny TXk kxNe T xNy
e Common factors F in Y and X: without loss of generality,
loadings can be 0 for some factors, and /\yT/\y and A A, not full rank
Dimension: N, N, and T are large, N can be much larger than IV,
Strength of factor j in Y:
= Strong on Y: Zj(Ay)i-/Ny = 0,(1)
= Weak on Y: 3 (A,)7/Ny = 0,(1), e.g., (A)j # O for small subset
= Not existant on Y: (A,); =0 for all /
Similar for X, but assume weak factors on Y are strong on X
Common component C; = F,"(A,);, idiosyncratic errors (e.):; and (e,)s



Model Setup: Observation Pattern of Target Y

1 observed

Observation matrix WY = [W,] : Wy =
0 missing

(b) Staggered adoption (¢) Low frequency

(a) Randomly missing

Assumption: Observation Pattern of Y

1. W is independent of F and e, (but can depend on A,)
Y
2. Sufficiently many time-series observations: @ > q > 0, where Q,-}/
denotes the set of time periods when both units / and j of Y are observed

= For exposition, assume X is fully observed



Target-PCA Estimator

Motivation: Combine PCA objective functions for auxiliary data X and target
data Y with a positive target weight ~: For fuIIy observed Y/,

Ny T
FTJD\yZZ(XﬁfFT 4. ZZ Y — F(A))?

i=1 t=1 i=1 t=1

auxiliary error target error

Equivalent to (with normalization assumption +F ' F = /)
m;axtrace(FT(XXT +y- YYT)F> = mgxtrace(FTZ(A’)(Z(“/))TF)
where Z(0) = [X,\7Y] € RT X (NxtNy)

Target-PCA:

1. Estimate sample covariance matrix 3.7 € R(NHMNIX(NtNy) of 7(0) ysing
only observed entries
Estimate loadings A, and Ay by applying PCA to PR
Estimate factors F by regressing observed Z(") on A, and /N\y
Estimate common components/impute missing entries C,; = £, (A,);
Xiong and Pelger (2022) applied to Z()

I &> w0



Key Element of Target-PCA Estimator: Target Weight ~

Ny T Ny T
Qmin 32> (Xa = FIA)? + - 30D (Ya = FT(A))
T =1 =1 i=1 t=1
auxiliary error target error

Three special cases:
e v=0: PCAon X
e 7 = o0: PCA on observed Y
e 7 = 1: PCA on concatenated data Z = [X, Y]

Two fundamental effects of target weight ~:
e Consistency effect in factor identification
(We need to select v at the right rate)
e Efficiency effect in the estimation of factors and loadings
(We need to select v at the right scale)

Optimal target weight ~ achieves both effects in one-step
= Optimal combination of multiple data sets in one step
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Two Important Effects of Target Weight




Effect 1: Consistency Effect of Target Weight ~

Consistency: Select weight 7 to identify strong factors from both panels
e Allows to estimate weak factors on Y with target-PCA
e Intuition: Top eigenvalues of XX " and 7YY " should be of the same scale.

Top eigenvalues XX " and YY T proportional to N, and N,
= Select v = O(N,/N,)

lllustrative example: A two-factor model
e Panel Y: Factor 1 strong, but factor 2 weak = Y only identifies factor 1
e Panel X: Factor 2 strong, but factor 1 missing = X only identifies factor 2
Specifically
e Loadings of Y: factor 1 is strong: (A ) (0 0'/\ )i

factor 2 is weak: (A))i2 i (0,0,\ )if i < y/ otherwise, (A,)i> =0

e Loadings of X: only second factor exists (Ay)2 R (0,03,) and (Ax)1 =0
id.

ii.d flo ii.d

o Fu "X (0,0%), Fo "% (0,0%). (e)u "~ (0,02), (e))s "< (0,02)
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Effect 1: Consistency Effect of Target Weight ~

Without errors and missing observations, target-PCA estimates factors from

1 1
— = 77T — = ___IXXT 4 4YYT
N N, N, 1N, X7 vy ]

[FO FO] (£0)+ 0,(1)) {ﬁﬂ

where F F®) ¢ RT denote the vector of the first and second factors and

2
0
s _ N 0 0 N T
MTN+N, | [0 ] L
y
Ak T, st

y

o Key idea: v = O (N,/N,) gives asymptotically full rank of )A:X’z
e Both eigenvalues in the limit of 5" are of the same order

= Both factors can be identified from NX%MZ(“')Z(””)T

= Naive concatenating (v = 1) can have rank deficiency for fg\l)t

12



Effect 2: Efficiency Effect of Target Weight ~

Efficient weighting of panels:
e First ensure identification of all factors in Y, then fine-tune the scaling of ~

e For a target weight ~ with the right rate O(N./N, ), which scaling
constant improves the efficiency?

= Balance noise level between observed target data and auxiliary data

Illustrative Example: A one-factor model

e Key ingredient: Noise level is different in X and Y
o Fu " (0,0%), (e "= (0,02). (e)s "X (0,02)
ii.d

Loadings of Y: (A))i1 ~° (O,U/Q\y)

ii.d

Loadings of X: (AJ)i "% (0,03 )

Observation pattern:
Entries in Y are missing uniformly at random with P(W,] =1) = p
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Effect 2: Efficiency Effect of Target Weight ~

Proposition
Let oy, 7 = min(N,, T) and assume N, /N, — c € (0,00). For the one-factor
model example, as T, N, N, — oo, for any / and t, we have

Vw7 (E0) 72 (Ci - i) S N (0,1),

where
5N T O—g (S/\/ T 1
Z(W)': y yF2 Dl 1 A 2,_—2
C,ti T p0',2_— t+ T p (y): t
on, T N, 2N, N2
+ 2N (o +agrech, ) (ool +o*aph ol )

e The optimal « that minimizes Z(CA")U. isv* = aﬁx/agy for any / and t
e [nterpretation: Up-weight the panel with smaller idiosyncratic error to

improve estimation efficiency (similar to GLS)
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Asymptotic Results




Consistency

Theorem 1: Consistency
Let dp, 7 = min(Ny, T) and suppose that N\, /Ny — ¢ € [0,00). Under general

observation pattern and approximate factor model m, for T, Ny, Ny — oo:

1. If v = r- N./N, with some constant r then

£7) = limn, o0y Y (z,\x +YREE,, ) is positive definite, and

Ny +Ny

1 2

6 R
vl

/N\l(",) o H(’j«)/\f_"r’

= 0,(1)

2
) - Op(l)

2. If v # r- Ni/N, for any constant r, then 25\ 2 may not be positive definite. If
5 «)
t

Fr — (HOT)=1F,

1 T
o7 (32
=l

This implies that C,; of Y is consistent.

5\ is not positive definite, then Ft is inconsistent for some t
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Asymptotic Normality

Theorem 2: Asymptotic Normality
Let dn,,7 = min(Ny, T) and suppose that Ny /Nx — ¢ € [0,00) and v = r - Nx/Ny
for some constant r. Under general observation pattern and approximate factor
model , as T, Ny, N, — oc:
e Loadings of Y: for /T /N, — 0,
) e N1 d
VTED) T2 ((HO) LR = (A)i) 5 N(O, ),
= _ ~),0b: ~),mi YI\— —
where =7, = 31 (=) 1 () 4 10 (2(0) et

e Factors: for T /Ny, — 0 and /N, /T — 0,
V/on, T(EED T2 (HOTE = F) 5 (O, 1),

My—1 | Ony.T ,0b ONy, T ~(7),mi )y —
ahere £2) = (£ [T rg)om 4 S pghm] 0
e Common components of Y: for ﬁ/Ny — 0 and \/E/T — 0,

5/\/%7'(2(&)&)71/2(6& = Ct,') E) ./\/'(07 1)
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Optimal +* for Different Missing Patterns and Noise Ratios

p Ne/Ny = 1 Ne/Ny = 4
NR=0.25 NR=1 NR=4 | NR=0.25 NR=1 NR=4
60% 0.25 100 4.00 0.25 1.00  4.00
75% 0.25 100 4.00 0.25 1.00  4.00
90% 0.25 100  4.00 0.25 1.00  4.00
60% 0.61 175 425 1.95 509  7.00
75% 0.42 153 435 1.06 362 612
90% 0.28 115 418 0.40 162 461
60% 0.55 196  4.66 1.69 552  7.84
75% 0.39 146 434 0.92 323 584
90% 0.28 112 413 0.40 156 450
60% 0.70 216  4.96 2.24 620  8.63
75% 0.47 148 430 1.30 356  5.90
90% 0.32 112 4.04 0.61 191 450

= Missing at random: Optimal " only depends on NR (noise ratio), but not
on N, /N, and fraction of observed entries p

= Other observation patterns: Optimal v* depends on NR, N,/N,, p and
other quantities related to correlations in observation pattern



Empirical Results




Empirical Study 1 — Comparison with Benchmark Methods

Goal: Compare imputation accuracy of target-PCA with benchmark methods
e XPy: PCA on Y only (Xiong and Pelger 2022)
e XPz: PCA on Z = [X, Y] (Xiong and Pelger 2022)
e SE-PCA: Combining factors extracted from separate PCAs on X and Y

Data: 120 fully observed monthly U.S. macroeconomic indicators from
FRED-MD from 01/1960 to 12/2020

e Target Y: 19 series in interest and exchange rates category

e Auxiliary X: 101 series from the other 7 categories

Mask Y according to four types of missing patterns
e Missing at random
e Block missing
e Low-frequency observation

e Censoring

Compare the relative MSE Zi,t(éﬁ — Yi)?/ 3., Yi on the masked entries
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Empirical Study 1 — Relative MSE of Different Methods

Observation Pattern

factor

(Missing Ratio) number T-PCA XPy XPz SE-PCA
k=1 0.787 0.796 0.986 0.806
it e e k=2 0.486 0.503 0.969 0.499
(40%) k=3 0.483 0.635 0.927 0.627
k=4 0.491 0.813 0.793 0.795
k=5 0.479 1.363 0.613 1835
k=1 0.958 1.018 0.971 1.003
block missing k=2 0.700 0.805 0.961 0.852
(19%) k=3 0.713 0.796 0.974 0.803
k=4 0.741 0.783 0.974 0.781
k=5 0.786 2.601 0.935 2.584
k=1 0.942 0.949 1.019 1.009
T k=2 0.927 1.140 0.931 1.149
(92%) k=3 0.926 1.213 0.936 1.223
k=4 0.910 1.212 1.095 1.234
k=5 1.017 1.251 1.092 1.280
k=1 0.927 - 0.996 0.995
T k=2 0.881 - 0.996 0.994
(40%) k=3 0.892 - 0.993 0.992
k=4 0.882 - 0.990 0.987
k=5 0.869 - 0.984 0.981

= Target-PCA provides the most precise imputation for all cases
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Empirical Study 2 — Imputation of Low-Frequency Macro Time Series

Quarterly observed GDP vs. monthly imputed GDP by target-PCA

10{ — imputed

observed

-2

-a

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

2020
year

= Target-PCA captures the (unknown and unobserved) variation in between
two quarterly GDP observations using monthly observed auxiliary data

= Target-PCA can be used for nowcasting low-frequency macro time-series
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Conclusion




Conclusion

Target-PCA:

Novel method to estimate a latent factor model for a target panel with
missing observations using supplementary panel data
Transfer learning perspective: Optimally extracts information from
supplementary data that is useful for the target
Easy-to-adopt method to estimate factor structure and impute missing
observations that is broadly applicable
Benefits of target-PCA:

1. Estimation of weak factors in target panel

2. Efficient combination of multiple panels

3. Estimation of factor structure under challenging missing patterns
Asymptotic inferential theory under very general assumptions on the

approximate factor model and missing patterns:
= Provides guidance for the optimal selection of "
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Appendix

We present the assumptions of a simplified factor model which captures the

main insight of the general approximate factor model

Assumption S1: Simplified Factor Model
There exists a constant C < oo such that

1. Factors: F, = (0,%F) and E||F||* < C for any t.

2. Loadings: (A.); HGH (0,34, ), where X, is positive semidefinite.

(A PN (0, ZX;“) and the loading of the j-th factor
(AV)i = (A (U,); where 33" is positive definite, and Bernoulli
random variable (U, ); € {0,1} is/independent in i with P((U,); = 1) = p;
for some p; € [0, 1]. Furthermore, E[(A.);|* < C, E[(A,):]|* < C and
YA, + X, is positive definite, where 1, = E[(A,):(A,), ]
3. Idiosyncratic errors: (e.); (0,02), (&) gy (0,02,

E(e.); < C.E(e,)} < C, and the ratio 0., /o, is bounded away from 0.

4. Independence: F.A., A, e and e, are independent.

22



Appendix

Assumption S2: Moments of Observation Pattern and Simplified Factor

Model
1. Missing pattern: for any /, there exist constants u.)(l), (2'1), (2 2 v§2‘3)
,(3) 1 Ny W@ 9ii,jl . 2.1)
and w;”’, such that Ny > qwéu w;, /v2 ZJ, 1 q”q/ﬂ w; 7,

1 Ny gji P w(2'2) 1 Ny qgji P w<2 ,3)
N2 £j,I1=1 qjq; it NZ j,I=1 gjqy i
N,
2 il he1 g’l’qf’; L w . Furthermore, there exist constants w*), w® and
E :

, and

w¥, such that o '.Vy w ( ) ﬂ> w®, /\}y Z’Vylw( ) 2 @ and
W 2
Nizfyl‘” NZ/1 D20,

Y
2. Systematic loadings for observed data: For any ¢,

N% S WY (M)A B Ta, . and Ta, + T, ¢ is positive definite.
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Effect 1: Consistency Effect of Target Weight ~

Proposition

Under the data generating process and observation pattern described for the
two-factor model, let oy, 7 = min(/N,, T) and assume that /V, /N, — 0.
Target-PCA with v = r- . /N, for some constant r & (0, cc) can consistently
estimate the latent factors. As T, .. N, — oo, there exists some rotation

j@m.

matrix H such that
-
) 1
wr (35

If v = O(1), then F, is inconsistent.

F. — HF,

24



Effect 2: Simulation Results of Efficiency Effect

Relative MSE of C;; for all j and t

036
034 034
032 — — 0324 —
)
0.30 | s 0.30
02841 2 o2
! b=
N R N s ®
0.26 \‘ ______________ &) 0.26
| eanl —— NiNy=1
0244\ =7 - 024 Lk’
N Relative MSE —— Ny/Ny=2
022 ---- Asymptotic variance 0.22 —— Ni/Ny=3
020 0.20
4 10 20 30 40 50 4 10 20 30 40 50

target weight y target weight y

e The optimal 4" only varies with o., /0., but not N, /N, in this missing at

random example

e The optimal 7" that minimizes the relative MSE coincides with the
optimal 7" that minimizes the asymptotic variance

= Use inferential theory to select the optimal ~*



Simulation

e Comparison between target-PCA method and three benchmark methods
e T-PCA: Our target-PCA method
e XPy: PCA method (Xiong and Pelger (2020)) using only target Y
e XPz: PCA method (Xiong and Pelger (2020)) using directly
concatenated panel Z = [X, Y]
e SE-PCA: Separate PCAs method combining factors separately
extracted from X and Y as the factor estimators
e Two-factor model with three missing mechanisms:
e Missing at random
e |Low-frequency observation
e Missing depends on loadings
Entries in Y are missing conditional on S; = L(|(A,)i2| > threshold)
e We compare the relative mean square error (relative MSE) for the
observed, missing and all entries of the common component of Y:

Z(t,i)eM(CtI’ - Cri)2

relative MSEx =
Z(t.i)C/\/l(Cti)2
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Simulation: Relative MSE for Different Estimators

Observation Pattern M T-PCA XPy XPz SE-PCA

obs 0.182 0.407 0.224 0.531
miss 0.179 0.411 0.222 0.563
all 0.181 0.409 0.223 0.547
obs 0.279 - 0.844 1.052
miss 1.011 - 1.124 1.104
all 0.645 - 0.980 1.077
obs 0.213 0.234 0.256 0.276
miss 0.247 0.290 0.281 0.352
all 0.239 0.276 0.275 0.335

e Target-PCA estimator is robust in different settings

e Target-PCA estimator is efficient and achieves the smallest relative MSE

compared with other three methods in most cases
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Empirical Study 1 — Comparison with Benchmark Methods

lllustration of the performance of different methods:

15
1.0
0.5
0.0
-0.5
missed
~1.0 = imputed by T-PCA
= imputed by SE-PCA
= imputed by XP_Y

-15
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
year

Figure 1: Real time series v.s. imputed time series of the spread between 3-month treasury and Fed Funds rate
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