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Introduction

Motivation

Conventional large-dimensional latent factor model assumes the
exposures to factors (factor loadings) are constant over time

Observation: Asset prices’ exposures to the market (and other risk
factors) are time-varying

Example: Term-structure factor exposure is different in recessions
and booms.

Figure: PCA Factor Loadings for Treasuries in Boom and Recession

(a) Level Factor (b) Slope Factor (c) Curvature Factor
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Introduction

This paper

Research Question:

1 Find latent factors and loadings that are state-dependent.

2 Test if factor model is state-dependent.

Key elements of estimator

1 Statistical factors instead of pre-specified (and potentially
miss-specified) factors

2 Uses information from large panel data sets: Many cross-section
units with many time observations

3 Factor structure can be time-varying as a general non-linear
function of the state process
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Introduction

Contribution of this paper

Contribution

Theoretical

PCA estimator combined with kernel projection for factors,
state-varying factor loadings and common components
Inferential theory for estimators for N,T →∞:

consistency
asymptotic normal distribution and standard errors

Test for state-dependency of latent factor model

Generalized correlation test statistic detects for which states
model changes
Non-standard superconsistency

Empirical

State-dependency of factor loadings in US Treasury securities
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Pelger (2018), Äıt-Sahalia and Xiu (2017): High-frequency
Fan et al. (2016): Projected PCA

Large-dimensional factor models with structural breaks

Stock and Watson (2009): Inconsistency
Breitung and Eickmeier (2011), Chen et al. (2014): Detection
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Model

The Model

State-varying factor model

Xit is the observed data for the i-th cross-section unit at time t

State variable St at time t

Xit = Λi (St)
1×r︸ ︷︷ ︸

loadings

Ft
r×1︸︷︷︸

factors

+ eit︸︷︷︸
idiosyncratic

i = 1, · · ·N, t = 1, · · ·T

N cross-section units (large), time horizon T (large)
r systematic factors (fixed)

Factors F , loadings Λ(St), idiosyncratic components e are unknown

Data X and state process St observed

Markus Pelger and Ruoxuan Xiong State-Varying Factor Models of Large Dimensions 6/26



Introduction Model Empirical Applications Conclusion

Model

The Model

Examples (with one factor) equivalent to multi-factor representation

Loadings linear in state: Λi (St) = Λi,1 + Λi,2St

Xit = Λi,1 Ft︸︷︷︸
Ft,1

+Λi,2 (StFt)︸ ︷︷ ︸
Ft,2

+eit

Loadings nonlinear in discrete state: Λi (St) = gi (St), St ∈ {s1, s2}

Xit = gi (s1)︸ ︷︷ ︸
Λi,1

1{St=s1}Ft︸ ︷︷ ︸
Ft,1

+ gi (s2)︸ ︷︷ ︸
Λi,2

1{St=s2}Ft︸ ︷︷ ︸
Ft,2

+eit

Our model

Loadings nonlinear in non-discrete state: Λi (St) = gi (St) with
continuous distribution function for St

⇒ Cumbersome/No multi-factor representation
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Assumptions

The Model: Main Assumptions

Approximate state-varying factor model

Systematic factors explain a large portion of the variance

Idiosyncratic risk is nonsystematic: Weak time-series and
cross-sectional correlation

State: recurrent (infinite observations around the state to condition
on) with continuous stationary PDF

Factor Loadings: deterministic functions of the state and the
functions are Lipschitz continuous (observations in the nearby state
are useful)
∃C , ‖Λi (s + ∆s)− Λi (s)‖ ≤ C |∆s|
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Assumptions

The Model: Extension

Robustness to noise in state process

State process is observed with noise:

Xt︸︷︷︸
N×1

= Λ(St)︸ ︷︷ ︸
N×r

Ft︸︷︷︸
r×1

+ Et︸︷︷︸
N×r

Ft︸︷︷︸
r×1

+ et︸︷︷︸
N×1

= Λ(St)Ft + ψt + et

Under weak conditions noise can be treated like idiosyncratic noise.

⇒ All results hold!

Missing relevant states

Assume loadings depend on multiple states but we only condition on
a subset of them.

State-varying factor model explains strictly more variance than
constant loading model.

⇒ More parsimonious representation even under misspecification.
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Estimation

The Model: Intuition

Intuition for Estimation

Constant loadings:
Loadings are principal components of covariance matrix

Cov(Xt) = ΛCov(Ft)Λ> + Cov(et).

State-varying loadings:
Loadings for St = s are principal components of covariance matrix
conditioned on the state St = s:

Cov(Xt |St = s) = Λ(s)Cov(Ft |St = s)Λ(s)> + Cov(et |St = s).

⇒ Intuition: Estimate conditional covariance matrix Cov(Xt |St = s)
with kernel projection and apply PCA to it.
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Estimation

The Model: Nonparametric Estimation

Obtective function and nonparametric estimation

The estimators minimize mean squared error conditioned on state:

F̂ s , Λ̂(s) = arg min
F s ,Λ(s)

1

NT (s)

N∑
i=1

T∑
t=1

Ks(St)(Xit − Λi (s)′Ft)
2

Kernel function Ks(St) = 1
hK
(
St−s
h

)
(e.g. K (u) = 1√

2π
exp{− u2

2 })

T (s) =
∑T

t=1 Ks(St), T (s)
T

p−→ π(s) (stationary density of St = s)

Bandwidth parameter h determines local “state window”
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Estimation

The Model: Nonparametric Estimation

Nonparametric estimation

Project square root of kernel on the data and factors

X s
it = K 1/2

s (St)Xit F s
t = K 1/2

s (St)Ft

PCA solves optimization problem

F̂ s , Λ̂(s) = arg min
F s ,Λ(s)

1

NT (s)

N∑
i=1

T∑
t=1

(X s
it − Λi (s)′F s

t )2

⇒ Apply PCA to conditional covariance matrix

F̂ s are the eigenvectors corresponding to top k eigenvalues of
estimated conditional covariance matrix 1

NT (s) (X s)′X s

Λ̂(s) are coefficients from regressing X s on F̂ s
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Asymptotic Results

The Model: Nonparametric Estimation

Major challenge: Bias term

X s
t = Λ(St)F

s
t + est = Λ(s)F s

t + est︸ ︷︷ ︸
X̄ s
t

+ (Λ(St)− Λ(s))F s
t︸ ︷︷ ︸

∆X s
t

.

∆X s
it = Λi (St)F

s
t − Λi (s)F s

t = Op(h)

Kernel bias complicates problem and lowers convergence rates

Theorem: Consistency

Assume N,Th→∞ and δNT ,hh→ 0 with δNT ,h = min(
√
N,
√
Th):

δ2
NT ,h

(
1
T

∑T
t=1

∥∥∥F̂ s
t − (Hs)TF s

t

∥∥∥2
)

= Op(1)

δ2
NT ,h

(
1
N

∑N
i=1

∥∥∥Λ̂i (s)− (Hs)−1Λi (s)
∥∥∥2
)

= Op(1)

for known full rank matrix Hs
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Asymptotic Results

Limiting Distribution of Estimated Factors

Theorem (Factors)

Assume
√
Nh/(Th)→ 0, Nh→∞ and Nh2 → 0. Then

√
N
(
K−1/2
s (St)F̂

s
t − (Hs)′Ft

)
= (V s

r )−1 (F̂ s)′F s

T

1√
N

N∑
i=1

Λi (s)eit + op(1)

D−→ N(0, (V s)−1QsΓs
t (Qs)′(V s)−1)

Rotation matrix Hs = Λ(s)′Λ(s)
N

(F s )′F̂ s

T (V s
r )−1

K
−1/2
s (St)F̂

s
t converges to some rotation of Ft at rate

√
N

Efficiency mainly depends on asymptotic distribution of
1√
N

∑N
i=1 Λi (s)eit
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Asymptotic Results

Limiting Distribution of Estimated Factor Loadings

Theorem (Loadings)

Assume
√
Th/N → 0, Th→∞, and Th3 → 0. Then

√
Th(Λ̂i (s)− (Hs)−1Λi (s))

= (V s
r )−1 (F̂ s)′F s

Th

Λ(s)′Λ(s)

N

√
Th

T (s)

T∑
t=1

F s
t e

s
it + op(1)

D−→ N(0, ((Qs)′)−1Φs
i (Qs)−1)

Λ̂i (s) converges to some rotation of Λi (s) at rate
√
Th

Efficiency mainly depends on asymptotic distribution of√
Th

T (s)

∑T
t=1 F

s
t e

s
it =

√
Th

T (s)

∑T
t=1 Ks(St)Fteit
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Asymptotic Results

Limiting Distribution of Common Component

Theorem (Common Components)

Assume Nh→∞, Th→∞, Nh2 → 0 and Th3 → 0. Then for each i

δNT ,h(Ĉit,s − Cit,s) =
δNT ,h√

N
Λi (s)′Σ−1

Λ(s)

(
1√
N

N∑
i=1

Λi (s)eit

)

+
δNT ,h√
Th

F ′tΣ−1
F |s

(√
Th

T (s)

T∑
t=1

F s
t e

s
it

)
+ op(1)

δNT ,h = min(
√
N,
√
Th)

Define Cit,s = F ′tΛi (s) and Ĉit,s = (
F̂ s
t

K
1/2
s (St)

)′Λ̂i (s)

If N/(Th)→ 0, Λi (s)eit dominates

If Th/N → 0, F s(t)esit dominates
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Test Constancy

Generalized Correlation

Test for constancy: Generalized correlation test

Consider loadings in two states Λ1 = Λ(s1) and Λ2 = Λ(s2). Test for

H0 : Λ1 = Λ2G for some full rank square matrix G

H1 : Λ1 6= Λ2G for any full rank square matrix G

Generalized correlation, defined as ρ invariant of G

ρ = trace

{(
ΛT

1 Λ1

N

)−1(
ΛT

1 Λ2

N

)(
ΛT

2 Λ2

N

)−1(
ΛT

2 Λ1

N

)}

ρ̂ estimated ρ and r is #factors

Equivalent to test H0 : ρ = r and H1 : ρ < r
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Test Constancy

Generalized Correlation

Theorem: Generalized correlation test

Assume
√
N/(Th)→ 0, Nh→∞, Th→∞,

√
Th/N → 0, Nh2 → 0 and

NTh3 → 0: √
NTh(ρ̂− r − ξ̂>b̂)

d−→ N(0,Ω)

ξ>b bias term with feasible estimates b̂ and ξ̂

feasible estimator for asymptotic covariance Ω̂

⇒ Superconsistent rate
√
NTh (corner case)

h ∈ [1/T 1/2, 1/T 3/4]: combinations of N and T exist to satisfy the
rate conditions
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US Treasury Yields

Empirical Applications

US Treasury Securities Yields from 2001-07-31 to 2016-12-01:
N = 11, T = 2832: 1, 3, 6 mo., 1, 2, 3, 5, 7, 10, 20, 30 yr.

State: Log-normalized VIX

Generalized correlation: ρ̂(Λ(Boom),Λ(Recession)) = 2.6352
⇒ reject ρ ≈ 3 for Λ(Boom) ≈ Λ(Recession)

(a) Log-normalized VIX (b) Proportion of variance explained
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US Treasury Yields

Empirical Applications

Long term bonds have higher weights in the level factor in high
VIX/recession

Figure: Factor Loading to the Level Factor (1st Factor)

(a) Log-normalized VIX (b) Recession Indicator
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US Treasury Yields

Empirical Applications

In high vix/recession: short term bonds more negative and long
term bonds less positive

Figure: Factor Loading to the Slope Factor (2nd Factor)

(a) Log-normalized VIX (b) Recession Indicator
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US Treasury Yields

Empirical Applications

Minimum portfolio weight in the curvature factor shifts to shorter
term bond in high vix/recession

Figure: Factor Loading to the Curvature Factor (3rd Factor)

(a) Log-normalized VIX (b) Recession Indicator
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US Treasury Yields

Empirical Applications: Test Constancy of Loadings

Loadings in low vix are different from loadings in high vix (red
region)

Figure: Generalized Correlation Test of Estimated Loadings in Two States
under Null Hypothesis (H0: Loadings in Two States are Constant)

(a) t-value (b) p-value

Markus Pelger and Ruoxuan Xiong State-Varying Factor Models of Large Dimensions 23/26



Introduction Model Empirical Applications Conclusion

S&P500 stock returns

S&P500 Stock Returns

Daily stocks returns (01/2004 to 12/2016): N = 332 and T = 3253

State: Log-normalized VIX

⇒ Constant loading model needs roughly three more factors to explain
the same variation in- and out-of-sample.

Explained Variation (In-sample)
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Explained Variation (Out-of-sample)
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Figure: Variation explained by state-varying and constant loading model.
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S&P500 stock returns

S&P500 Stock Returns

Sharpe Ratio (Out-Of-Sample) of Mean-Variance-Efficient Factor Portfolio
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Figure: Out-of-sample Sharpe ratio of mean-variance efficient portfolio
based on latent factors of the state-varying and constant loading model.

⇒ State-varying factor models capture more pricing information
than constant-loading factors
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Conclusion

Conclusion

Methodology

Estimators for latent factors, loadings and common
components where loadings are state-dependent

We combine large dimensional factor modeling with
nonparametric estimation

Asymptotic properties of the estimators

Constancy test for estimated state-varying factor loadings

Empirical Results

We discover the movements of factor loadings by state values
in the US Treasury Securities and Equity Markets

Promising empirical results in other data sets
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Appendix

Simulations

Data Generating Process for Simulations

We generate data from a one-factor model

Xit = Λi (St)Ft + eit

Factor: Ft ∼ N(0, 1)

State: Ornstein–Uhlenbeck (OU) process (mean-reverting)
St = θ(µ− St)dt + σdWt , where θ = 1, µ = 0.2, and σ = 1

stochastic volatility in financial data

Loading: Λi (St) = Λ0i + 1
2StΛ1i + 1

4S
2
t Λ2i + 1

8S
3
t Λ3i , where

Λ0i ,Λ1i ,Λ2i ,Λ3i ∼ N(0, 1)

Idiosyncratic errors: IID/Heteroskedasticity/Cross sectional
dependence

Markus Pelger and Ruoxuan Xiong State-Varying Factor Models of Large Dimensions 1/6



Appendix

Simulations

Simulation of CLT for Estimated Factors

√
N(Γ̂s

t )−1/2(Q̂s)−1V̂ s
(
K
−1/2
s (St)F̂

s
t − (Hs)′Ft

)
d−→ N(0, Ir )

Figure: Comparison between simulated normalized factor distribution and
standard normal distribution
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Appendix

Simulations

Simulation of CLT for Estimated Loadings

√
Th(Φ̂s

i )−1/2(Q̂s)′(Λ̂i (s)− (Hs)−1Λi (s))
d−→ N(0, Ir )

Figure: Comparison between simulated normalized loading distribution
and standard normal distribution
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Appendix

Simulations

Simulation of CLT for Common Component

(
1
N V̂it,s + 1

ThŴit,s

)−1/2 (
Ĉit,s − Cit,s

)
d−→ N(0, Ir )

Figure: Comparison between simulated normalized common component
distribution and standard normal distribution
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Appendix

Simulations

Simulation of CLT for Estimated Generalized Correlation

Loading: constant with the state Λi (St) = Λ0i
√
NTh(ρ̂− r − ξ̂T b̂)/(Ω̂)1/2 d−→ N(0, 1)

Figure: Comparison between simulated normalized estimated generalized
correlation distribution and standard normal distribution

Markus Pelger and Ruoxuan Xiong State-Varying Factor Models of Large Dimensions 5/6



Appendix

Simulations

Recover Functional Form of Loadings vs. State

Λi (St) = Λ0i + 1
2StΛ1i + 1

4S
2
t Λ2i + 1

8S
3
t Λ3i

Figure: Loading as a function of the State
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