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Introduction

Motivation

@ Conventional large-dimensional latent factor model assumes the
exposures to factors (factor loadings) are constant over time

@ Observation: Asset prices' exposures to the market (and other risk
factors) are time-varying

@ Example: Term-structure factor exposure is different in recessions
and booms.

Figure: PCA Factor Loadings for Treasuries in Boom and Recession
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Introduction

This paper

Research Question:

© Find latent factors and loadings that are state-dependent.

@ Test if factor model is state-dependent.

Key elements of estimator

@ Statistical factors instead of pre-specified (and potentially
miss-specified) factors

@ Uses information from large panel data sets: Many cross-section
units with many time observations

© Factor structure can be time-varying as a general non-linear
function of the state process
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Introduction

Contribution of this paper

Contribution

@ Theoretical

o PCA estimator combined with kernel projection for factors,
state-varying factor loadings and common components
o Inferential theory for estimators for N, T — oc:

@ consistency
@ asymptotic normal distribution and standard errors
o Test for state-dependency of latent factor model

o Generalized correlation test statistic detects for which states
model changes
o Non-standard superconsistency

@ Empirical

o State-dependency of factor loadings in US Treasury securities
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Literature (partial list)

@ Large-dimensional factor models with constant loadings

o Bai (2003): Distribution theory
o Fan et al. (2013): Sparse matrices in factor modeling

@ Large-dimensional factor models with time-varying loadings

o Su and Wang (2017): Local time-window
o Pelger (2018), Ait-Sahalia and Xiu (2017): High-frequency
o Fan et al. (2016): Projected PCA

@ Large-dimensional factor models with structural breaks

o Stock and Watson (2009): Inconsistency
o Breitung and Eickmeier (2011), Chen et al. (2014): Detection
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The Model

State-varying factor model

@ Xj; is the observed data for the /-th cross-section unit at time t

@ State variable S; at time t

X,'t:/\,'(st) Ft + e,'t I:].,N,t:].,T
1xr rx1 ~~
~—— ~~ idiosyncratic
loadings factors
o N cross-section units (large), time horizon T (large)

e r systematic factors (fixed)

@ Factors F, loadings A(S;), idiosyncratic components e are unknown

@ Data X and state process S; observed
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The Model

Examples (with one factor) equivalent to multi-factor representation
@ Loadings linear in state: Aj(S;) = Aj1 +Ai2Se
Xie =N Fr +Ni2(SeF:) +en
~ e end
Ft,l Ft72
@ Loadings nonlinear in discrete state: A;(S;) = gi(S:), St € {51, %}

Xir = gi(s1) 1ys,=s;} Ft + &i(52) 14s5,—5,} Ft +ei
—— — M —,

A1 Fen Ai2 Fio

@ Loadings nonlinear in non-discrete state: A;(S:) = gi(St) with
continuous distribution function for S;

= Cumbersome/No multi-factor representation
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Assumptions

The Model: Main Assumptions

Approximate state-varying factor model

@ Systematic factors explain a large portion of the variance

@ Idiosyncratic risk is nonsystematic: Weak time-series and
cross-sectional correlation

@ State: recurrent (infinite observations around the state to condition
on) with continuous stationary PDF

@ Factor Loadings: deterministic functions of the state and the
functions are Lipschitz continuous (observations in the nearby state

are useful)
3C, ||Ai(s + As) — Ai(s)]| < C|As]|
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Assumptions

The Model: Extension
[ Robustness to noise in state process |

Robustness to noise in state process
@ State process is observed with noise:

Xe =NS:) Fe + & Fe + e0 =NSe)Fe+ U + e
~ e N
Nx1 Nxr rx1 Nxr rx1 Nx1

@ Under weak conditions noise can be treated like idiosyncratic noise.

= All results hold!

Missing relevant states

@ Assume loadings depend on multiple states but we only condition on
a subset of them.

@ State-varying factor model explains strictly more variance than
constant loading model.

= More parsimonious representation even under misspecification.
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Estimation

The Model: Intuition

Intuition for Estimation

@ Constant loadings:
Loadings are principal components of covariance matrix

Cov(X;) = ACov(F:)AT + Cov(e;).

@ State-varying loadings:
Loadings for S; = s are principal components of covariance matrix
conditioned on the state S; = s:

Cov(X;|S: = s) = A(s)Cov(F:|S: = s)A(s)" + Cov(e|S: = s).

= Intuition: Estimate conditional covariance matrix Cov(X¢|S; = s)
with kernel projection and apply PCA to it.
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Estimation

The Model: Nonparametric Estimation

Obtective function and nonparametric estimation

The estimators minimize mean squared error conditioned on state:

N T
F,A(s) = arg min ] DD T K(Se)(Xie — Nils) Fe)?

Fs,A(s) (s e —)

o Kernel function Ki(S;) = +K (22) (e.g. K(u) = exp{—

T(s) = 2;1 Ks(S:), T(Ts) 2, 7(s) (stationary density of S, = s)

@ Bandwidth parameter h determines local “state window”

)
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Estimation

The Model: Nonparametric Estimation

Nonparametric estimation

@ Project square root of kernel on the data and factors

Xi=KY2(S)Xe  Ff=KYA(S)F:

@ PCA solves optimization problem

N T
Fs A(s) = arg m|n ZZ( — Ni(s) F£)?
= Apply PCA to conditional covariance matrix

@ F* are the eigenvectors corresponding to top k eigenvalues of
estimated conditional covariance matrix ﬁ(s)(Xs)’Xs

A(s) are coefficients from regressing X* on F*
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Asymptotic Results

The Model: Nonparametric Estimation

Major challenge: Bias term

X = N(S)FF + € = N(s)F? + e + (M(St) — A(s))Fs .

X: AXE
o AX; = Ni(S:)F7 — Ni(s)F; = Op(h)

@ Kernel bias complicates problem and lowers convergence rates

Theorem: Consistency

Assume N, Th — oo and dy7 ph — 0 with dy7., = min(v/N,v/Th):

Fe—(H)TF

5I2VT,h <% ZtT=1 ‘
N
Ghra (B |

)=o)

o) - ()| ) = 0ut)

for known full rank matrix H*®
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Asymptotic Results

Limiting Distribution of Estimated Factors

Theorem (Factors)

Assume v/Nh/(Th) — 0, Nh — co and Nh> — 0. Then
VN (KV2(S:)Ff = (H)F)
s\ E£s N
= (Vr)_ (F)F ZA’ elt+op )

= N, (V)T Q@) (V) ™)

@ Rotation matrix H° = M (FS (Vs)

° Ks*1/2(5t)lf"tS converges to some rotation of F; at rate /N

@ Efficiency mainly depends on asymptotic distribution of
LSV Ai(s)e;
N > iz Ni(s)eir
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Asymptotic Results

Limiting Distribution of Estimated Factor Loadings

Theorem (Loadings)

Assume v/ Th/N — 0, Th — oo, and Th®> — 0. Then
VTh(/A\i(S)—(’T/S)_1 Ni(s ))

e L O ZF:3+

D

= N0, ((@)) T 5(Q)7)

@ A;(s) converges to some rotation of A;(s) at rate v/Th

° Efficiency mainly depends on asymptotic distribution of

T(s) Zt 1 Fieq = T(s Zt 1 S(St)Fteit

Markus Pelger and Ruoxuan Xiong

State-Varying Factor Models of Large Dimensions



Asymptotic Results

Limiting Distribution of Common Component

Theorem (Common Components)

Assume Nh — 0o, Th — oo, Nh*> — 0 and Th® — 0. Then for each i

) _ 1
T p(Cits — Cirs) = %/\i(s)lz,\(ls) (\/NZAI(S)GH.“>

("] (5,\/7”/7 = min(\m, vV Th)
o PN If—s ~
@ Define Gyt s = F{Ai(s) and Ci s = (K;Tt(st))’/\,'(s)
@ If N/(Th) — 0, Ai(s)e; dominates
@ If Th/N — 0, F°(t)e; dominates
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Test Constancy

Generalized Correlation

Test for constancy: Generalized correlation test

Consider loadings in two states A; = A(s1) and Ay = A(sp). Test for

Ho : A1 = Ao G for some full rank square matrix G
Hi : N1 # NG for any full rank square matrix G

@ Generalized correlation, defined as p invariant of G

B MM\ Y (ATAN (ATA Y (AT A
p-trace{( N ) N N N

@ p estimated p and r is #factors

@ Equivalent totest Ho:p=rand Hy:p<r
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Test Constancy

Generalized Correlation

Theorem: Generalized correlation test

Assume v/N/(Th) — 0, Nh — oo, Th — oo, v Th/N — 0, Nh?> — 0 and
NTh® — 0:

VNTh(p — r— ETh) % N(0,Q)

@ ¢Tb bias term with feasible estimates b and &
@ feasible estimator for asymptotic covariance Q
= Superconsistent rate v/ NTh (corner case)

@ he[1/TY?,1/T3/*]: combinations of N and T exist to satisfy the
rate conditions
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US Treasury Yields

Empirical Applications

@ US Treasury Securities Yields from 2001-07-31 to 2016-12-01:
N=11,T=2832:1,3,6mo., 1,2, 3,5,7, 10, 20, 30 yr.

@ State: Log-normalized VIX

@ Generalized correlation: p(A(Boom), A(Recession)) = 2.6352
= reject p =~ 3 for A(Boom) ~ N\(Recession)
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US Treasury Yields

Empirical Applications

@ Long term bonds have higher weights in the level factor in high
VIX/recession

Figure: Factor Loading to the Level Factor (1st Factor)
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US Treasury Yields

Empirical Applications

@ In high vix/recession: short term bonds more negative and long
term bonds less positive

Figure: Factor Loading to the Slope Factor (2nd Factor)
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US Treasury Yields

Empirical Applications

@ Minimum portfolio weight in the curvature factor shifts to shorter
term bond in high vix/recession

Figure: Factor Loading to the Curvature Factor (3rd Factor)
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US Treasury Yields

Empirical Applications: Test Constancy of Loadings

@ Loadings in low vix are different from loadings in high vix (red
region)

Figure: Generalized Correlation Test of Estimated Loadings in Two States
under Null Hypothesis (Hp: Loadings in Two States are Constant)

10°
107
1072
103
1074
103
10°%
1077
10-8
107°
10710

(a) t-value (b) p-value

Markus Pelger and Ruoxuan Xiong State-Varying Factor Models of Large Dimensions



Empirical Applications
®0

S&P500 stock returns

S&P500 Stock Returns

@ Daily stocks returns (01/2004 to 12/2016): N =332 and T = 3253
@ State: Log-normalized VIX

= Constant loading model needs roughly three more factors to explain
the same variation in- and out-of-sample.
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Figure: Variation explained by state-varying and constant loading model.
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S&P500 stock returns

S&P500 Stock Returns
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Figure: Out-of-sample Sharpe ratio of mean-variance efficient portfolio
based on latent factors of the state-varying and constant loading model.

= State-varying factor models capture more pricing information
than constant-loading factors
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Conclusion

Conclusion

Methodology

@ Estimators for latent factors, loadings and common
components where loadings are state-dependent

@ We combine large dimensional factor modeling with
nonparametric estimation

@ Asymptotic properties of the estimators

@ Constancy test for estimated state-varying factor loadings

v

Empirical Results

@ We discover the movements of factor loadings by state values
in the US Treasury Securities and Equity Markets

@ Promising empirical results in other data sets
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Simulations

Data Generating Process for Simulations

o We generate data from a one-factor model
Xit = Ni(St)Fe + eit

e Factor: Fy ~ N(0,1)

e State: Ornstein—Uhlenbeck (OU) process (mean-reverting)
St =0(pn — St)dr + odW;, where § =1, 4 =0.2, and 0 =1

e stochastic volatility in financial data

@ Loading: /\,'(St) =Noi + %St/\li + %53/\2,’ + éSS’/\g,,-, where
Nois Mis Naiy Nsi ~ N(0, 1)

e Idiosyncratic errors: |ID/Heteroskedasticity/Cross sectional
dependence
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Simulations

Simulation of CLT for Estimated Factors

o VN(F?)V2(Q) Ve (KSVA(S)F: — (Ho)'Fe) 5 N(O, )

Figure: Comparison between simulated normalized factor distribution and
standard normal distribution
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Simulations

Simulation of CLT for Estimated Loadings

o VTh(®)~2(Q%) (Ai(s) — (H)7*Ai(s)) < N(O, 1)

Figure: Comparison between simulated normalized loading distribution
and standard normal distribution
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Simulations

Simulation of CLT for Common Component

A

iy 104 -1/2 d
° (ﬁ Vit s + 5 VVit,s) (Cit,s - Cit,s) — N(O, Ir)

Figure: Comparison between simulated normalized common component
distribution and standard normal distribution
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Simulations

Simulation of CLT for Estimated Generalized Correlation

e Loading: constant with the state A;(S:) = Ao;
o VNTh(p — r — ETH) /()12 % N(0, 1)

Figure: Comparison between simulated normalized estimated generalized
correlation distribution and standard normal distribution
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Simulations

Recover Functional Form of Loadings vs. State

o Ni(S:) =Noi + %5}/\1,’ + %53/\2,' + %5?/\3,'

Figure: Loading as a function of the State
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