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Motivation

Problem: Large dimensional panel data with missing entries is prevalent:

e Macroeconomic data: Staggered releases, mixed frequencies

Policy evaluation: Simultaneous or staggered policy rollout
e Financial data: Mergers, new firms, bankruptcy
e Recommender system: Netflix challenge

Our Goal: Impute missing values and estimate latent factor structure for panel
with general observational pattern



A Motivating Example: A Causal Approach to Study Publication Effect

Question: Does academic publication of a strategy affect this strategy's return?
Large-dimensional data: Many strategies and their returns over many
time-periods. Strategies were published at different times

A causal inference approach: Compare the returns without and with
publication. We can only observe one at one time. The other one is the
counterfactual and modeled as missing obsrvation.

Impute missing observations: Use general statistical factors estimated from the
partial observed large-dimensional panel data
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Observation pattern for the panel of returns without publication



Contribution

Large-dimensional factor modeling:
e Simple all-purpose estimator for latent factor structure and data
imputation for essentially any missing pattern

e Inferential theory for latent factor models and imputed values under
general approximate factor model

Causal inference on panel data:

e Counterfactual outcomes modeled as missing values and imputed by
estimated common components from latent factor

e Test for the entry-wise, time-dependent treatment effect under general
treatment adoption pattern with unobserved factors

Empirical study:

e Companion paper: Study the publication effect of investment anomaly

strategies



Importance

Causal inference on panel data:

Example: Publication effect on risk factors, Smoking regulation in different states
Problem: When and where is the intervention effective?

Our solution: Tests for entry-wise and weighted treatment effects

Importance: Goes beyond mean effects without assuming prespecified covariates

Large-dimensional factor modeling

Example: Panel of macroeconomic data or stock returns

Problem: How to estimate a factor model from incomplete data?
Our solution: Estimator for the factor model with confidence interval
Importance: Input for other applications, for example risk factors

Missing data imputation

Example: Financial data, mixed frequency data, users’ ratings at Netflix
Problem: Whether to use imputed value?
Our solution: Estimator for each entry with confidence interval

Importance: Include observations with incomplete data instead of leaving them out for

analysis which can lead to bias and efficiency loss
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Theory: Model and Estimation



Model Setup: Approximate Latent Factor Model

Approximate factor model: Observe Y for N units over T time periods
Yie = /\,T Fi +eir
~—~
1xk kX1

In matrix notation:

AN FT + e
~ = =
NxT Nxk kxT NxT

N and T large

e Factors F; explain common time-series movements

e Loadings /\; capture correlation between units

e Factors and loadings are latent and estimated from the data
e Common component C;; = A, F;

e |diosyncratic errors E[e;] = 0

e Number of factors k fixed

= Estimate A\;, F:, Ci and use estimated Cj; to impute missing Y



General Observational Pattern

. . 1 observed
Observation matrix W = [W;| : Wi =
0 missing

e |/ can depend on /A, but independent of F and e

e Staggered treatment adoption
e Missing uniformly at random P(Wi =1) = piz
P(W,=1)=p Once missing stays missing:

e Cross-section missing at Wis =0 fors >t

random P(W = 1) = p; e Mixed-frequency observations
e Time-series missing at random P(Wi = 1) = pit
P(Wi =1) = pi Equivalent to staggered design
after reshuffling



Estimation of the Factor Model (All-Purpose Estimator)

Step 1 Estimate sample covariance matrix 3 of Y using only observed entries:
= ‘Q I Zzeo it Yje, where Qj = {t: Wi = 1 and Wj; = 1} are times
where both units are observed
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Step 2 Estimate loadings /A (standard):
Apply principal component analysis (PCA) to = %7\[57\T

Step 3 Estimate factors F with regression on loadings for observed entries:

N =1 N
I:_t = <Z VV,t/N\,i\,T) (Z VVrti\l Ylt)
i=1 i=1

Step 4 Estimate common components/missing entries Ce = /N\,-I F.



Assumptions: Approximate Factor Model

Assumption 1: Approximate Factor Model

1. Systematic factor structure: > and >, full rank
1 1Y

?ZHFIQZF NZA,—/\T&ZA
t=1 i=1

2. Weak dependence of errors: bounded eigenvalues of correlation and
autocorrelation matrix for errors »
Simplification for presentation: e;; ~ (0,02), Elef] < co

3. Factors F: and errors e;; independent
4. Uniqueness of factor rotation: Eigenvalues of >, > distinct
Fel|*] < oo, E[[|Ai]*] < oo
Simplification for presentation: F; e (0,XF), A gt (0,%7)

5. Bounded moments: |

e Standard assumptions on large dimensional approximate factor model

= Conventional PCA consistent and asymptotically normal with full observations



Assumptions: Observational Pattern

Assumption 2: Observational Pattern

1. W independent of F and e = Important: /' can depend on A

2. “Sufficiently many” cross-sectional observed entries

N
= Z/\ A Wi B 50 full rank for all ¢
i=1

3. “Sufficiently many” time-series observed entries

- Z Z FtFT — full rank matrix for all j
‘QU‘ tEQy

4. “Not too many” missing entries: g;; = lim7_, .. |Q;|/T > g > 0 and
. 1 N N Gl s . Qk/\
wjj = limpy_ 0o N2 Zi*l 2171 ﬁ with qij kI = limr_ 00
o F 1 N N N G
wj = limy_ 00 N3 2im1 2001 2k=1 q,,%

w = limy_ 00 = T Zl, Z, 12] 1Zk 1 q,/qk: exist.

120 Cul

= Very general pattern that can depend on latent factor model

® Special case: Missing at random: wj; = 1/p, w; =1, w =1

e Caveat: Observed entries proportional to N and T, but we show how to relax it
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Asymptotic Results




Inferential Theory

Theorem 1: Loadings

Under Assumptions 1 and 2, it holds for N, T — oo and /T /N — 0:

VTT2(HR; = A) 4 N (0, 1)

o Mhj=wj X3® + (wj — IR
e Convergence rate is /T

e | is a standard rotation matrix

9ij, lj
qijq; "
full observations: wj; = 1, missing at random wj; = 1/p

e Missing pattern weight wj; = limy_, ﬁ Z/IVZI Z;\Izl

e Conventional covariance matrix Fj’\bs = Z;lag

e Variance correction term ZT'J?S

wii

>1
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Inferential Theory

Theorem 2: Factors
Under Assumptions 1 and 2, it holds for N, T — oo and \W/T — 0:

Vor Y 2(HT e — Fo) 5 N (0, )

o Mre= TP+ F(w—1IFT
e Convergence rate is 6 = min(/N, T)

e Missing pattern weight w = limp . .. # vazl Z;VZI Zszl 221:1
For full observations or missing at random: w = 1

qii, kj
Q1 9kj

Q Q 0 1
e Conventional covariance matrix =% = ¥ o2

e Variance correction term ):’,?isf

= Inferential theory for common components C;; based on
. . T .
Vs (C,-t -G ) =5 (H’I/\,- - /\,») Fr + VoA (HT F. — Ft> + op(1),

convergence rate is min (ﬁ \W)
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Propensity-Weighted Estimator

Assumption 3: Conditional Observational Pattern

Assume observations depend on observed, time-invariant covariates S € RV <X

1. The probability of W/;; = 1 depends on S; and P(W;, = 1[5;) >

2. Conditional cross-sectional independence: |/ independent of A conditional on S.

3. Wi is independent of W conditional on S;, S;.

Alternative estimator for loadings and common components:
A; /\ YA
= (3 sy ™) (35 pengsy )

e F° = F for cross-section missing at random: P(W = 1|S;) is the same
for all /

= A larger variance in general

= Can be robust to selection bias when we use too few latent factors
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Tests for Causal Effects

Treatment effect for staggered design with Ty ; control and T; ; treated

T 1 treated (missin

Y,-ig) _ /\,('9) ,__t(e) ter, 0= ( g)
—— 0 control (observed)

(0)

Cft

We consider three different effects:

1. Individual treatment effect: 7, = C,-(tl) — C/.(to)
2. Average treatment effect: 7, = % ZLTMH Tit

3. Weighted average treatment effect: 75; = (ZTZ)AZTTA(TOJH) T

The test statistic for these three effects is build on the inferential theory of Ci.
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Simulation




Simulation Design

Comparison between the four methods that provide inferential theory

1. XP: Our all-purpose method €
2. XPprop: Our propensity-weighted method C°
3. JMS (Jin, Miao and Su (2020)): Assuming missing at random
4. BN (Bai and Ng (2020)): Combined block PCA
We compare the relative MSE Zi.t((-:ft - Ge)’/ >, Ch
e The data generating process is Xi = A/ F; + eir
e 2 factors
o A N(0, b), Fe " N(0, k) and e < N(0,1)
e N =250, T =250

All-purpose estimator: We allow for the most general observation pattern

= Our method provides the most precise estimation in most cases

— C° is very close to C, but less efficient
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Simulation: Relative MSE for Different Methods

Observation Pattern | Wy, | XP  XPprop JMS BN
Random obs | 0.015 0.015 0.023
miss | 0.015 0.015 0.021
all 0.015 0.015 0.023
Simultaneous obs | 0.012 0.012 0.124 0.012
miss | 0.020 0.020 0.184 0.017
all 0.014 0.014 0.139 0.013
Staggered obs | 0.017 0.017 0.366 0.073
miss | 0.043 0.043 0.318 0.087
all 0.027 0.027 0.347 0.078
Random obs | 0.019 0.020 0.077
W depends on S miss | 0.024 0.024 0.067
all 0.021 0.021 0.073
Simultaneous obs | 0.032 0.040 0.703  0.141
W depends on S miss | 0.231 0.256 0.521  0.279
all 0.129  0.145 0.615  0.209
Staggered obs | 0.016 0.018 0.272  0.117
W depends on S miss | 0.064 0.069 0.346  0.186
all 0.033  0.036 0.299  0.142

= XP is precise for various observation patterns.
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Simulation: Omitted Factor and Weak Factor

k I

[F 1, 1 2] [L1] [5.0.5] [L.1] [5, 0.5]
[oF,1,0F 2] [1,1] [5,0.5] (1.1] (5. 0.5]
Method XP XPprop | XP XPprop XP XPprop | XP XPprop
obs C'” 0227 0251|0011 0011 0014 0014|0002  0.003
miss C” | 0.478  0.288|0.007  0.007 |[ 0.044  0.045|0.026  0.023
all ¢ 0314  0.264 0009 0009 |[ 0.024 0025 |0.014  0.012
c)—c”| 0481  0.294|0008 0.007| 0.052 0052|0026  0.023
s 5 | 0168  0.032]0002 0002 0.012 0.013|0.008  0.007

= XPprop is more precise if one factor is omitted

= XPprop is more precise if the second factor is a weak factor
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Conclusion




Conclusion

A new method for latent factor estimation with missing data:

e Simple all-purpose estimator for latent factor structure and data imputation
Easy-to-adopt and applies to essentially any missing pattern

e Extension to propensity-weighted estimator:
Less efficient but can be more robust to misspecification

e Confidence interval for each estimated entry under general and nonuniform
observation patterns

Key application in causal inference:

e General tests for entry-wise and weighted treatment effects

e Generalizes conventional causal inference techniques to large panels and controls
automatically for unobserved covariates

Empirical results in a companion paper:

e Weaker publication effect of investment anomaly strategies than naive
before-after analysis

e Well-known strategies have no significant publication effect
= consistent with compensation for systematic risk

e 15% of strategies exhibit statistical significant reduction in average returns and
outperformance of market
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