Large Dimensional Latent Factor Modeling with Missing Observations and Applications to Causal Inference

Ruoxuan Xiong and Markus Pelger

Emory University and Stanford University

Motivation

Problem: Large dimensional panel data with missing entries is prevalent:

- Macroeconomic data: Staggered releases, mixed frequencies
- Policy evaluation: Simultaneous or staggered policy rollout
- Financial data: Mergers, new firms, bankruptcy
- Recommender system: Netflix challenge

Our Goal: Impute missing values and estimate latent factor structure for panel with general observational pattern

1

A Motivating Example: A Causal Approach to Study Publication Effect

Question: Does academic publication of a strategy affect this strategy's return? Large-dimensional data: Many strategies and their returns over many time-periods. Strategies were published at different times

A causal inference approach: Compare the returns without and with publication. We can only observe one at one time. The other one is the counterfactual and modeled as missing obsrvation.

Impute missing observations: Use general statistical factors estimated from the partial observed large-dimensional panel data

Contribution

Large-dimensional factor modeling:

- Simple all-purpose estimator for latent factor structure and data imputation for essentially any missing pattern
- Inferential theory for latent factor models and imputed values under general approximate factor model

Causal inference on panel data:

- Counterfactual outcomes modeled as missing values and imputed by estimated common components from latent factor
- Test for the entry-wise, time-dependent treatment effect under general treatment adoption pattern with unobserved factors

Empirical study:

 Companion paper: Study the publication effect of investment anomaly strategies

3

Importance

Causal inference on panel data:

Example: Publication effect on risk factors, Smoking regulation in different states

Problem: When and where is the intervention effective?

Our solution: Tests for entry-wise and weighted treatment effects

Importance: Goes beyond mean effects without assuming prespecified covariates

Large-dimensional factor modeling

Example: Panel of macroeconomic data or stock returns

Problem: How to estimate a factor model from incomplete data?

Our solution: Estimator for the factor model with confidence interval Importance: Input for other applications, for example risk factors

Missing data imputation

Example: Financial data, mixed frequency data, users' ratings at Netflix

Problem: Whether to use imputed value?

Our solution: Estimator for each entry with confidence interval

Importance: Include observations with incomplete data instead of leaving them out for

analysis which can lead to bias and efficiency loss

Related Literature (Incomplete and Partial List)

Factor modeling

- Full observations with inferential theory: Bai and Ng 2002, Bai 2003, Fan, Liao and Mincheva 2013, Pelger and Xiong 2021a+b, Lettau and Pelger 2020a+b
- Partial observations: Stock and Watson 2002, Jin, Miao and Su 2021, Bai and Ng 2021, Cahan, Bai and Ng 2021

Causal inference on panel data

- Difference in differences: Card and Krueger 1994, Bertrand, Duflo and Mullainathan 2004
- Synthetic control methods: Abadie and Gardeazabal 2003, Abadie, Diamond and Hainmueller 2010, 2015, Doudchenko and Imbens 2016
- Matrix completion: Athey, Bayati, Doudchenko, Imbens and Khosravi 2021

Matrix completion

- Independent sampling: Candes and Recht 2009, Mazumder, Hastie and Tibshirani 2010, Negahban and Wainright 2012
- Dependent sampling: Athey, Bayati, Doudchenko, Imbens and Khosravi 2021
- Independent sampling with inferential theory: Chen, Fan, Ma and Yan 2019

Theory: Model and Estimation

Model Setup: Approximate Latent Factor Model

Approximate factor model: Observe Y_{it} for N units over T time periods

$$Y_{it} = \underbrace{\bigwedge_{i=1}^{T} F_t}_{1 \times k} + e_{it}$$

In matrix notation:

$$\underbrace{Y}_{N\times T} = \underbrace{\Lambda}_{N\times k} \underbrace{F}^{\top} + \underbrace{e}_{N\times T}$$

- N and T large
- Factors F_t explain common time-series movements
- Loadings Λ_i capture correlation between units
- Factors and loadings are latent and estimated from the data
- Common component $C_{it} = \Lambda_i^{\top} F_t$
- Idiosyncratic errors $\mathbb{E}[e_{it}] = 0$
- Number of factors k fixed
- \Rightarrow Estimate Λ_i , F_t , C_{it} and use estimated C_{it} to impute missing Y_{it}

General Observational Pattern

Observation matrix
$$W = [W_{it}] : W_{it} = \begin{cases} 1 & \text{observed} \\ 0 & \text{missing} \end{cases}$$

• W can depend on Λ , but independent of F and e

- Cross-section missing at random $P(W_{it} = 1) = p_t$
- Time-series missing at random $P(W_{it} = 1) = p_i$

- Staggered treatment adoption $P(W_{it} = 1) = p_{it}$ Once missing stays missing: $W_{is} = 0$ for $s \ge t$
- Mixed-frequency observations
 P(W_{it} = 1) = p_{it}
 Equivalent to staggered design after reshuffling

7

Estimation of the Factor Model (All-Purpose Estimator)

Step 1 Estimate sample covariance matrix $\tilde{\Sigma}$ of Y using only observed entries: $\tilde{\Sigma}_{ij} = \frac{1}{|Q_{ij}|} \sum_{t \in Q_{ij}} Y_{it} Y_{jt}$, where $Q_{ij} = \{t : W_{it} = 1 \text{ and } W_{jt} = 1\}$ are times where both units are observed

Step 2 Estimate loadings $\tilde{\Lambda}$ (standard):

Apply principal component analysis (PCA) to $\tilde{\Sigma} = \frac{1}{N} \tilde{\Lambda} \tilde{D} \tilde{\Lambda}^{\top}$

Step 3 Estimate factors \tilde{F} with regression on loadings for observed entries:

$$\tilde{F}_t = \left(\sum_{i=1}^N W_{it} \tilde{\Lambda}_i \tilde{\Lambda}_i^{\top}\right)^{-1} \left(\sum_{i=1}^N W_{it} \tilde{\Lambda}_i Y_{it}\right)$$

Step 4 Estimate common components/missing entries $\tilde{C}_{it} = \tilde{\Lambda}_i^{\top} \tilde{F}_t$

Assumptions: Approximate Factor Model

Assumption 1: Approximate Factor Model

1. Systematic factor structure: Σ_F and Σ_Λ full rank

$$\frac{1}{T} \sum_{t=1}^{T} F_t F_t^{\top} \stackrel{p}{\to} \Sigma_F \qquad \frac{1}{N} \sum_{i=1}^{N} \Lambda_i \Lambda_i^{\top} \stackrel{p}{\to} \Sigma_{\Lambda}$$

- Weak dependence of errors: bounded eigenvalues of correlation and autocorrelation matrix for errors Simplification for presentation: e_{it} ^{iid} (0, σ_e²), E[e_{it}⁸] < ∞
- 3. Factors F_t and errors e_{it} independent
- 4. Uniqueness of factor rotation: Eigenvalues of $\Sigma_{\Lambda}\Sigma_{F}$ distinct
- 5. Bounded moments: $\mathbb{E}[\|F_t\|^4] < \infty$, $\mathbb{E}[\|\Lambda_i\|^4] < \infty$ Simplification for presentation: $F_t \overset{\text{i.i.d.}}{\sim} (0, \Sigma_F)$, $\Lambda \overset{\text{i.i.d.}}{\sim} (0, \Sigma_\Lambda)$
- Standard assumptions on large dimensional approximate factor model
- ⇒ Conventional PCA consistent and asymptotically normal with full observations

Assumptions: Observational Pattern

Assumption 2: Observational Pattern

- 1. W independent of F and $e \Rightarrow$ Important: W can depend on Λ
- 2. "Sufficiently many" cross-sectional observed entries

$$\frac{1}{N} \sum_{i=1}^{N} \Lambda_{i} \Lambda_{i}^{\top} W_{it} \xrightarrow{p} \Sigma_{\Lambda,t} \qquad \text{full rank for all } t$$

3. "Sufficiently many" time-series observed entries

$$\frac{1}{N} \sum_{i=1}^{N} \Lambda_{i} \Lambda_{i}^{\top} \frac{1}{|Q_{ij}|} \sum_{t \in Q_{ij}} F_{t} F_{t}^{\top} \stackrel{\rho}{\to} \text{full rank matrix for all } j$$

4. "Not too many" missing entries: $q_{ij} = \lim_{T \to \infty} |Q_{ij}|/T \ge \underline{q} > 0$ and

$$\begin{split} &\omega_{jj} = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i=1}^{N} \sum_{l=1}^{N} \frac{q_{ij,ij}}{q_{ij}q_{ij}} \text{ with } q_{ij,kl} = \lim_{T \to \infty} \frac{|\vec{Q}_{ij} \cap \mathcal{Q}_{kl}|}{T}; \\ &\omega_{j} = \lim_{N \to \infty} \frac{1}{N^3} \sum_{i=1}^{N} \sum_{l=1}^{N} \sum_{l=1}^{N} \sum_{k=1}^{N} \frac{q_{ii,kj}}{q_{il}q_{kj}}; \\ &\omega = \lim_{N \to \infty} \frac{1}{N^4} \sum_{i=1}^{N} \sum_{l=1}^{N} \sum_{l=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \frac{q_{ii,kj}}{q_{ij}q_{kj}} \text{ exist.} \end{split}$$

- ⇒ Very general pattern that can depend on latent factor model
- Special case: Missing at random: $\omega_{ii} = 1/p$, $\omega_i = 1$, $\omega = 1$
- Caveat: Observed entries proportional to N and T, but we show how to relax it

Asymptotic Results

Inferential Theory

Theorem 1: Loadings

Under Assumptions 1 and 2, it holds for $N, T \to \infty$ and $\sqrt{T}/N \to 0$:

$$\sqrt{T}\Gamma_{\Lambda,j}^{-1/2}(H^{-1}\tilde{\Lambda}_j - \Lambda_j) \xrightarrow{d} \mathcal{N}(0, I_k)$$

- $\Gamma_{\Lambda,j} = \omega_{jj} \cdot \Sigma_{\Lambda}^{\mathsf{obs}} + (\omega_{jj} 1) \Sigma_{\Lambda,j}^{\mathsf{miss}}$
- Convergence rate is \sqrt{T}
- H is a standard rotation matrix
- Missing pattern weight $\omega_{jj} = \lim_{N \to \infty} \frac{1}{N^2} \sum_{i=1}^{N} \sum_{l=1}^{N} \frac{q_{ij,lj}}{q_{ij}q_{ij}}$, $\omega_{jj} \ge 1$ full observations: $\omega_{ij} = 1$, missing at random $\omega_{ij} = 1/p$
- Conventional covariance matrix $\Gamma_{\Lambda}^{\mathrm{obs}} = \Sigma_{F}^{-1} \sigma_{\mathrm{e}}^{2}$
- Variance correction term $\sum_{\Lambda,j}^{\text{miss}}$

Inferential Theory

Theorem 2: Factors

Under Assumptions 1 and 2, it holds for $N, T \to \infty$ and $\sqrt{N}/T \to 0$:

$$\sqrt{\delta}\Gamma_{F,t}^{-1/2}(H^{\top}\tilde{F}_{t}-F_{t})\xrightarrow{d}\mathcal{N}\left(0,I_{k}\right)$$

- $\Gamma_{F,t} = \frac{\delta}{N} \Sigma_{F,t}^{\text{obs}} + \frac{\delta}{T} (\omega 1) \Sigma_{F,t}^{\text{miss}}$
- Convergence rate is $\delta = \min(N, T)$
- Missing pattern weight $\omega = \lim_{N \to \infty} \frac{1}{N^4} \sum_{i=1}^N \sum_{l=1}^N \sum_{j=1}^N \sum_{k=1}^N \frac{q_{li,kj}}{q_{li}q_{kj}}$ For full observations or missing at random: $\omega = 1$
- Conventional covariance matrix $\Sigma_{F,t}^{\mathrm{obs}} = \Sigma_{\Lambda,t}^{-1} \sigma_{e}^{2}$
- Variance correction term $\sum_{F,t}^{\text{miss}}$
- ⇒ Inferential theory for common components C_{it} based on

$$\sqrt{\delta} \left(\tilde{C}_{it} - C_{it} \right) = \sqrt{\delta} \left(H^{-1} \tilde{\Lambda}_i - \Lambda_i \right)^{\top} F_t + \sqrt{\delta} \Lambda_i^{\top} \left(H^{\top} \tilde{F}_t - F_t \right) + o_p(1),$$
 convergence rate is min $\left(\sqrt{T}, \sqrt{N} \right)$.

12

Propensity-Weighted Estimator

Assumption 3: Conditional Observational Pattern

Assume observations depend on observed, time-invariant covariates $S \in \mathbb{R}^{N \times K}$:

- 1. The probability of $W_{it} = 1$ depends on S_i and $P(W_{it} = 1 | S_i) > 0$.
- 2. Conditional cross-sectional independence: W independent of Λ conditional on S.
- 3. W_{it} is independent of W_{js} conditional on S_i, S_j .

Alternative estimator for loadings and common components:

$$ilde{F}_t^S = \left(\sum_{i=1}^N rac{W_{it}}{P(W_{it}=1|S_i)} ilde{\Lambda}_i ilde{\Lambda}_i^ op
ight)^{-1} \left(\sum_{i=1}^N rac{W_{it}}{P(W_{it}=1|S_i)} Y_{it} ilde{\Lambda}_i
ight)$$

- $\tilde{F}^S = \tilde{F}$ for cross-section missing at random: $P(W_{it} = 1 | S_i)$ is the same for all i
- ⇒ A larger variance in general
- ⇒ Can be robust to selection bias when we use too few latent factors

Treatment effect for staggered design with $T_{0,i}$ control and $T_{1,i}$ treated

$$Y_{it}^{(\theta)} = \underbrace{\Lambda_{i}^{(\theta)} {}^{\top} F_{t}^{(\theta)}}_{C_{c}^{(\theta)}} + e_{it}, \quad \theta = \begin{cases} 1 & \text{treated (missing)} \\ 0 & \text{control (observed)} \end{cases}$$

We consider three different effects:

- 1. Individual treatment effect: $au_{it} = C_{it}^{(1)} C_{it}^{(0)}$
- 2. Average treatment effect: $au_i = \frac{1}{T_{1,i}} \sum_{t=T_{0,i}+1}^{T} au_{it}$
- 3. Weighted average treatment effect: $\tau_{\beta,i} = (Z^\top Z)^{-1} Z^\top \tau_{i,(T_{0,i}+1):T}$

The test statistic for these three effects is build on the inferential theory of \tilde{C}_{it} .

Simulation

Simulation Design

Comparison between the four methods that provide inferential theory

- 1. XP: Our all-purpose method $\tilde{\mathcal{C}}$
- 2. XP_{PROP} : Our propensity-weighted method \tilde{C}^S
- 3. JMS (Jin, Miao and Su (2020)): Assuming missing at random
- 4. BN (Bai and Ng (2020)): Combined block PCA

We compare the relative MSE $\sum_{i,t} (\tilde{C}_{it} - C_{it})^2 / \sum_{i,t} C_{it}^2$

- The data generating process is $X_{it} = \Lambda_i^\top F_t + e_{it}$
- 2 factors
- $\Lambda_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_2)$, $F_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, I_2)$ and $e_{it} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$
- N = 250, T = 250

All-purpose estimator: We allow for the most general observation pattern

- ⇒ Our method provides the most precise estimation in most cases
- \Rightarrow \tilde{C}^{S} is very close to \tilde{C} , but less efficient

Simulation: Relative MSE for Different Methods

	Observation Pattern	W_{it}	XP	XP_{PROP}	JMS	BN
	Random	obs miss all	$egin{array}{c} 0.015 \\ 0.015 \\ 0.015 \\ \end{array}$	0.015 0.015 0.015	0.023 0.021 0.023	
electron de la Principal de Paris (1900).	Simultaneous	obs miss all	0.012 0.020 0.014	0.012 0.020 0.014	0.124 0.184 0.139	0.012 0.017 0.013
	Staggered	obs miss all	0.017 0.043 0.027	0.017 0.043 0.027	0.366 0.318 0.347	0.073 0.087 0.078
	Random W depends on S	obs miss all	$egin{array}{c} 0.019 \\ 0.024 \\ 0.021 \\ \end{array}$	0.020 0.024 0.021	0.077 0.067 0.073	
	Simultaneous W depends on S	obs miss all	$egin{array}{c} 0.032 \\ 0.231 \\ 0.129 \\ \end{array}$	0.040 0.256 0.145	0.703 0.521 0.615	0.141 0.279 0.209
	Staggered W depends on S	obs miss all	0.016 0.064 0.033	0.018 0.069 0.036	0.272 0.346 0.299	0.117 0.186 0.142

 $[\]Rightarrow$ XP is precise for various observation patterns.

Simulation: Omitted Factor and Weak Factor

k	1				2				
$[\mu_{F,1},\mu_{F,2}]$	[1,1]		[5,0.5]		[1,1]		[5, 0.5]		
$[\sigma_{F,1},\sigma_{F,2}]$	[1,1]		[5,0.5]		[1,1]		[5, 0.5]		
Method	XP	XP_{PROP}	XP	XP _{PROP}	XP	XP_{PROP}	XP	XP_{PROP}	
obs $C_{it}^{(0)}$	0.227	0.251	0.011	0.011	0.014	0.014	0.002	0.003	
miss $C_{it}^{(0)}$	0.478	0.288	0.007	0.007	0.044	0.045	0.026	0.023	
all $C_{it}^{(0)}$	0.314	0.264	0.009	0.009	0.024	0.025	0.014	0.012	
$C_{it}^{(1)} - C_{it}^{(0)}$	0.481	0.294	0.008	0.007	0.052	0.052	0.026	0.023	
$\beta_i^{(1)} - \beta_i^{(0)}$	0.168	0.032	0.002	0.002	0.012	0.013	0.008	0.007	

[⇒] XP_{PROP} is more precise if one factor is omitted

 \Rightarrow XP_{PROP} is more precise if the second factor is a weak factor

Conclusion

Conclusion

A new method for latent factor estimation with missing data:

- Simple all-purpose estimator for latent factor structure and data imputation
 Easy-to-adopt and applies to essentially any missing pattern
- Extension to propensity-weighted estimator:
 Less efficient but can be more robust to misspecification
- Confidence interval for each estimated entry under general and nonuniform observation patterns

Key application in causal inference:

- General tests for entry-wise and weighted treatment effects
- Generalizes conventional causal inference techniques to large panels and controls automatically for unobserved covariates

Empirical results in a companion paper:

- Weaker publication effect of investment anomaly strategies than naive before-after analysis
- Well-known strategies have no significant publication effect
 consistent with compensation for systematic risk
- 15% of strategies exhibit statistical significant reduction in average returns and outperformance of market