Federated Causal Inference in Heterogeneous Observational Data

Ruoxuan Xiong, Allison Koenecke, Michael Powell, Zhu Shen, Joshua Vogelstein, Susan Athey

Roadmap

- How can we perform causal analysis across multiple datasets with similar structure that cannot be combined?
- Some stability of conditional treatment effects across datasets (so there is a potential benefit to combining them)

- 1. Motivating example (Alpha-blockers)
- 2. Challenges in federated causal inference
- 3. Federated methods for causal inference
- 4. Asymptotic results
- 5. Empirical studies

Can alpha blockers improve patient outcomes?

- Prazosin shown to prevent cytokine storms in mice [Staedtke V et al. 2018]
- Question: do α_1 -adrenergic receptors (α -blocker drugs) provide a prophylactic benefit for patients at risk of respiratory distress?
 - Ideal is run an <u>RCT</u>, but this is not available!

Can we use observational claims data to learn about effect of taking alpha blockers?

Patient ID	Patient Info	Date	Inpatient or Outpatient?	Diagnoses	Procedures	Prescribed Drugs & Duration	Expired?
	M / 58	Feb 2014	Doc's Office	BPH	Colonoscopy	tamsulosin 0.4mg / 30 days of pills	Ν
	M / 59	Jan 2015	Hospital	ARD, BPH	Ventilation		Ν
	F / 70	Dec 2015	Hospital	Cancer, Pneumonia	Ventilation		Y

More details about retrospective analysis

We have claims data from multiple sources

Challenges in federated causal inference

Federated Causal Inference in Heterogeneous Observational Data

Challenges in causal inference using multiple datasets

- **Challenge 1**: Proprietary patient data cannot be combined at the individual level
- Challenge 2: Datasets are heterogeneous
 - Heterogeneity means demographics, confounders, propensity and outcome models can be different
- Challenge 3: Account for selection bias
- Challenge 4: Require both estimation and inference methods

Challenges 3 and 4 separate our work from the federated learning literature

Our contribution

- 1. A systematic framework to federate point and variance estimates across datasets
 - Two main categories: IPW-MLE and AIPW; one supplementary category: MLE
 - Weight summary-level information cleverly depending on stability / model specification condition
 - Computationally efficient
- 2. Asymptotic guarantees for federated point and variance estimators
 - Federated point and variance estimators: Asymptotically the same as those using the combined individuallevel data
 - Federated point estimator: Doubly robust, efficient, and asymptotic normal
 - Federated variance estimator: Consistency

A procedure to select federated methods on empirical datasets

Inclusion criteria & confounding

Imbalance between the treated and control groups

- Covariates are imbalanced
 - Prostate problems tend to worsen with age
 - Treated patients are generally older
 - A larger fraction of treated patients have comorbidities and are less healthy

Account for confounders

- This paper: Make the best possible use of multiple datasets to estimate average treatment effect while adjusting for observed confounders
- Can get efficient, doubly robust estimates if we can accomplish these two goals:
 - 1. Assignment model: Estimate the relationship between treatment assignment and observed confounders, and use the resulting predictions to balance observed confounders across treatment and control groups
 - 2. Outcome model: Estimate the relationship between the outcome and observed confounders, e.g., age, comorbidities, general patients' health
- Challenges in health data
 - 1. Small, siloed datasets
 - 2. Many confounders

Assignment model

- The relationship between treatment assignment and observed confounders can be specified by
 - Parametric model
 - Model specification: e.g., $\log \frac{P(W=1|X)}{P(W=0|X)} = X^T \gamma_X$
 - *W*: Taking alpha-blockers
 - X: Age, comorbidities, general patients' health, ...
 - Estimation: Maximum-likelihood estimator (MLE), e.g., $\hat{\gamma}_x = \arg \max_{\gamma_x} \sum_i \log \frac{P(W_i=1|X_i,\gamma_x)}{P(W_i=0|X_i,\gamma_x)}$
 - This paper: Leverage multiple datasets to improve the precision of $\hat{\gamma}_x$

- Non-linear/Non-parametric model
 - Estimation: e.g., causal forests

Outcome model

- The relationship between treatment assignment and observed confounders can be specified by
 - Parametric model
 - Model specification: e.g., $\log \frac{P(Y=1|X,W)}{P(Y=0|X,W)} = W \beta_W + X^T \beta_X$
 - *Y*: Ventilation (followed by death)
 - β_w : The effect of taking alpha-blockers in reducing the log-odds of adverse outcome
 - Estimation: Inverse-propensity weighted maximum-likelihood estimator (IPW-MLE, Wooldridge, 2002, 2007) or maximum-likelihood estimator (MLE)
 - This paper: Leverage multiple datasets to improve the precision of $\hat{\beta}_w$ and $\hat{\beta}_x$

- Non-linear/Non-parametric model
 - Estimation: e.g., causal forests

Inverse-propensity weighted maximum-likelihood estimator

• Inverse-propensity weighted maximum-likelihood estimator (IPW-MLE) *balances* observed confounders across treatment and control groups

$$(\hat{\beta}_{w}, \hat{\beta}_{x}) = \arg \max_{\beta_{w}, \beta_{x}} \sum_{i} \varpi_{i} \log \frac{P(Y_{i}=1|X_{i}, W_{i}, \beta_{x}, \beta_{w})}{P(Y_{i}=0|X_{i}, W_{i}, \beta_{x}, \beta_{w})}$$

- ϖ_i : Weight for patient i
 - ATE weighting: $\varpi_i = \frac{W_i}{e(X_i)} + \frac{1-W_i}{1-e(X_i)}$
 - ATT weighting: $\varpi_i = W_i + (1 W_i) \frac{e(X_i)}{1 e(X_i)}$
 - $e(X_i) = P(W_i = 1 | X_i)$: Propensity score for patient *i*

Double robustness property of IPW-MLE

- IPW-MLE is a doubly robust estimator (Wooldridge, 2007, Lumley, 2011)
 - $\hat{\beta}_w$ and $\hat{\beta}_x$ are consistent if
 - We have observed relevant covariates
 - At least one of the propensity and outcome models is correctly specified

$$(\hat{\beta}_{w}, \hat{\beta}_{x}) = \arg \max_{\beta_{w}, \beta_{x}} \sum_{i} \varpi_{i} \log \frac{P(Y_{i}=1|X_{i}, W_{i}, \beta_{x}, \beta_{w})}{P(Y_{i}=0|X_{i}, W_{i}, \beta_{x}, \beta_{w})}$$

AIPW: Another doubly robust estimator

• Augmented inverse-propensity weighted (AIPW) estimator is also doubly robust

•
$$\hat{\tau}_{ate} = \frac{1}{n} \sum_{i} \left(\hat{\mu}_{1}(X_{i}) - \hat{\mu}_{0}(X_{i}) + \frac{W_{i}}{\hat{e}(X_{i})} (Y_{i} - \hat{\mu}_{1}(X_{i})) - \frac{1 - W_{i}}{1 - \hat{e}(X_{i})} (Y_{i} - \hat{\mu}_{0}(X_{i})) \right), \text{ where } \hat{\mu}_{d}(X_{i})$$

= $E[Y_{i}(d)]$

- This paper: Leverage multiple datasets to improve the precision of $\hat{\mu}_d(X_i)$ and $\hat{e}(X_i)$ (that are estimated parametrically)
 - Built on the results of MLE and IPW-MLE

Results from multiple sources

- Taking alpha-blockers seems to reduce the log odds of the adverse outcome on both datasets
- $\hat{\beta}_w$ from IPW-MLE on MarketScan and Optum

• **This paper**: Can we narrow down the confidence intervals by using the information in two datasets?

Challenges in federated methods for IPW-MLE

- Recall IPW-MLE estimates β_w and β_x by maximizing the inverse propensity weighted likelihood function
 - The estimation error of the propensity model carries over to the estimation of β_w and β_x
 - The precision of $\hat{\beta}_w$ and $\hat{\beta}_x$ depend on the (weighted) gradient and Hessian of propensity and outcome models in a complex manner
 - Key challenges in federated methods for IPW-MLE: Need to account for many conditions related to model specification and heterogeneity across datasets
 - What happens if we ignore these challenges and use off-the-shelf methods, e.g., inverse variance weighting (IVW)?

Asymptotic distribution of IPW-MLE

Lemma 1. Suppose the regularity conditions for the parametric propensity and outcome models hold. As the sample size $n \to \infty$, the IPW-MLE $\hat{\beta}$ is consistent and asymptotically normal

$$n^{1/2} \cdot (\hat{\beta} - \beta_0) \xrightarrow{d} N(0, V_\beta)$$

where $V_{\beta} = A_{\beta,\varpi}^{-1} \cdot (D_{\beta,\varpi} - M_{\beta,\varpi,\gamma}) \cdot A_{\beta,\varpi}^{-1}$ and

- $A_{\beta,\varpi}$: weighted Hessian of the *outcome* model
- $D_{\beta,\varpi}$: weighted outer product of the gradient of the *outcome* model
- $M_{\beta,\varpi,\gamma} = C_{\beta,\varpi,\gamma,1} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,2}^{T} + C_{\beta,\varpi,\gamma,2} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,1}^{T} C_{\beta,\varpi,\gamma,2} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,2}^{T}$
 - $V_{\gamma} = A_{\gamma}^{-1} \cdot B_{\gamma} \cdot A_{\gamma}^{-1}$
 - A_{γ} : Hessian of the *propensity* model
 - B_{γ} : outer product of the gradient of the *propensity* model
 - $C_{\beta,\varpi,\gamma,1}$ and $C_{\beta,\varpi,\gamma,2}$: weighted outer products of the gradient of the *propensity* model and the gradient of the *outcome* model

Solution Matrices in V_{β} depend on how the *propensity* and *outcome* models are specified, whether they are correctly specified, and whether ATE or ATT weighting is used

A popular approach: Inverse-variance weighting (IVW)

 $\hat{\tau}_{\scriptscriptstyle B}, \hat{\sigma}_{\scriptscriptstyle B}^2$

Meta-analysis (no covariates):

- 1. Estimate the treatment effect τ and variance σ_A^2 on each dataset
- 2. Combine coefficients by inverse variance weighting

$$\hat{\tau}_{i\nu w} = (\hat{\sigma}_A^{-2} + \hat{\sigma}_B^{-2})^{-1} (\hat{\sigma}_A^{-2} \hat{\tau}_A + \hat{\sigma}_B^{-2} \hat{\tau}_B)$$

DerSimonian and Laird (1986), Whitehead and Whitehead (1991), Sutton and Higgins (2008)

A popular approach: Inverse-variance weighting (IVW)

 $\hat{\beta}_R, \hat{V}_R$

Linear regression (adjust for covariates):

- Estimate coefficients β and variance V on each dataset
- Combine coefficients by inverse variance 2. weighting

$$\hat{\beta}_{ivw} = \left(\hat{V}_A^{-1} + \hat{V}_B^{-1}\right)^{-1} \left(\hat{V}_A^{-1}\hat{\beta}_A + \hat{V}_B^{-1}\hat{\beta}_B\right)$$

Du, Han, and Chen (2004), Karr, Lin, Sanil, and Reiter (2005) (machine learning and security)

Inverse-variance weighting (IVW)

$$\hat{\beta}_{i\nu w} = \left(\hat{V}_{A}^{-1} + \hat{V}_{B}^{-1}\right)^{-1} \left(\hat{V}_{A}^{-1}\hat{\beta}_{A} + \hat{V}_{B}^{-1}\hat{\beta}_{B}\right)$$

Pro: Inverse-variance weighting average has the least variance among all averages

Con: Inverse-variance weighting does not account for selection bias

Combining heterogeneous patient data by IVW

• Concern: The IVW pooled IPW-MLE estimate lies outside of those on MarketScan and Optum

What is wrong with IVW?

- MarketScan and Optum have different age populations
- Coefficients and variance-covariance matrices across datasets are heterogeneous

What is wrong with IVW?

- MarketScan and Optum have different age populations
- Coefficients and variance-covariance matrices across datasets are heterogeneous
 - Coefficient of age in outcome model switches sign (controlling for other covariates)
 - Covariance between treatment and age switches sign

$$\hat{\beta}_{ivw} = \left(\hat{V}_M^{-1} + \hat{V}_O^{-1}\right)^{-1} \left(\hat{V}_M^{-1}\hat{\beta}_M + \hat{V}_O^{-1}\hat{\beta}_O\right) = \begin{bmatrix}-0.71\\1.42\end{bmatrix}$$

$$\hat{\beta}_{M} = \begin{bmatrix} \hat{\beta}_{M,w} \\ \hat{\beta}_{M,age} \end{bmatrix} = \begin{bmatrix} -0.67 \\ 2.03 \end{bmatrix} \qquad \hat{V}_{M}^{-1} = \begin{bmatrix} 51.6 & -28.6 \\ -28.6 & 474.02 \end{bmatrix}$$

$$\hat{\beta}_{O} = \begin{bmatrix} \hat{\beta}_{O,w} \\ \hat{\beta}_{O,age} \end{bmatrix} = \begin{bmatrix} -0.02 \\ -0.15 \end{bmatrix} \qquad \hat{V}_{O}^{-1} = \begin{bmatrix} 55.34 & 14.61 \\ 14.61 & 187.08 \end{bmatrix}$$

What is wrong with IVW?

• Coefficients on two data sets are $\beta_M = \begin{bmatrix} \beta_{M,w} \\ \beta_{M,age} \end{bmatrix}$ and $\beta_O = \begin{bmatrix} \beta_{O,w} \\ \beta_{O,age} \end{bmatrix}$

• $\beta_{M,age} > 0$ and $\beta_{O,age} < 0$ (in our application, $\beta_{M,age} = 2.03$ and $\beta_{O,age} = -0.15$)

- Inverse variance-covariance matrix is $V_M^{-1} = \begin{bmatrix} v_{M,11} & v_{M,12} \\ v_{M,12} & v_{M,22} \end{bmatrix}$ and $V_0^{-1} = \begin{bmatrix} v_{0,11} & v_{0,12} \\ v_{0,12} & v_{0,22} \end{bmatrix}$
 - $v_{M,12} < 0$ and $v_{0,12} > 0$ (in our application, $v_{M,12} = -28.6$ and $v_{0,12} = 14.61$)
- Without loss of generality, assume $\beta_{M,w} < \beta_{O,w}$ (in our application, $\beta_{M,w} = -0.67$ and $\beta_{O,w} = -0.02$)

$$\begin{split} \beta_{ivw} &= (V_M^{-1} + V_0^{-1})^{-1} (V_M^{-1} \beta_M + V_0^{-1} \beta_0) \\ &= \beta_{M,w} + \frac{1}{c} \cdot \left(\left(\left(v_{M,22} + v_{0,22} \right) \cdot v_{0,11} - \left(v_{M,12} + v_{0,12} \right) \cdot v_{0,12} \right) \cdot \left(\beta_{0,w} - \beta_{M,w} \right) + \left(v_{0,22} v_{M,12} - v_{M,22} v_{0,12} \right) \cdot \left(\beta_{M,age} - \beta_{0,age} \right) \right) \\ &= 0 \\ &> 0 \\$$

 $> \beta_{ivw} < \beta_{M,w} \text{ when } \beta_{M,age} - \beta_{O,age} > \beta_{O,w} - \beta_{M,w}$ > In our application, $\beta_{M,age} - \beta_{O,age} = 2.18 \text{ and } \beta_{O,w} - \beta_{M,w} = 0.65$

 $c = (v_{M,11} + v_{0,11}) \cdot (v_{M,22} + v_{0,22}) - (v_{M,12} + v_{0,12})^2 > 0$

Results from our federated IPW-MLE

- The federated coefficient from our approach lies between those from MarketScan and Optum
- The confidence interval is narrower than those from MarketScan and Optum

Federated methods for causal inference

Federated Causal Inference in Heterogeneous Observational Data

Framework for federated causal inference

1. Input

Dataset A

Dataset B

2. Estimate propensityand outcome modelsfor each dataset

 \hat{eta}_A, \hat{V}_A

 $\hat{\beta}_B, \hat{V}_B$

3. Determine which conditions hold

Stable Stable
Correct Spec

6. Output

5. Federate outcome models across datasets

Federated Causal Inference in Heterogeneous Observational Data

Estimate propensity and outcome models for each dataset

- 1. Estimate propensity model P(W = 1|X) for each dataset
 - Parametric model: $P(W = 1|X) = e(X, \gamma)$
 - Estimate γ by maximizing the likelihood function (MLE)
- 2. Estimate outcome model f(Y|X, W) for each dataset
 - Parametric model: $f(Y|X, W, \beta)$
 - Estimate β by maximizing the inverse-propensity weighted likelihood function (IPW-MLE)
- Estimated propensity and outcome models can be used as the input of AIPW to estimate ATE/ATT for each dataset
 - AIPW is consistent even if one of the propensity and outcome models is misspecified

Framework for federated causal inference

1. Input

Dataset A

Dataset **B**

2. Estimate propensityand outcome modelsfor each dataset

 \hat{eta}_A, \hat{V}_A \hat{eta}_B, \hat{V}_B

3. Determine which conditions hold

Stable ^S
Correct Spec

6. Output

5. Federate outcome models across datasets

Select conditions to impose (will return to see how)

- Stability conditions across datasets
 - Whether the set of covariates and their joint distribution are the same
 - Whether parameters in the propensity/outcome model are the same
- Model specification conditions

3/2/22

• Whether the propensity/outcome model is correctly specified

$$\beta_{M} = \begin{bmatrix} \beta_{M,w} \\ \beta_{M,age} \end{bmatrix} = \begin{bmatrix} -0.07 \\ 2.08 \end{bmatrix} \quad \beta_{O} \neq \begin{bmatrix} \beta_{O,w} \\ \beta_{O,age} \end{bmatrix} = \begin{bmatrix} -0.02 \\ -0.15 \end{bmatrix}$$

Framework for federated causal inference

1. Input

Dataset A

Dataset **B**

2. Estimate propensityand outcome modelsfor each dataset

 $\hat{\beta}_A, \hat{V}_A$

 $\hat{\beta}_B, \hat{V}_B$

3. Determine which conditions hold

- Stable - Correct Spec ✓

6. Output

5. Federate outcome models across datasets

4. Federate propensity

models across datasets

 $\hat{\mathbf{H}}_{oldsymbol{eta}_{\mathcal{S}},oldsymbol{eta}_{\mathcal{S}}}^{(k)}$

 $egin{aligned} & \mathbf{0}_{S_1^{k-1} imes |\mathcal{S}|} \ & \hat{\mathbf{H}}_{oldsymbol{eta}_{cf_i},oldsymbol{eta}_{\mathcal{S}}} \end{aligned}$

Flowchart for coefficient federation in IPW-MLE

Variance federation in IPW-MLE

• Recall the asymptotic variance of $\hat{\beta}$ is $V_{\beta} = A_{\beta,\varpi}^{-1} \cdot (D_{\beta,\varpi} - M_{\beta,\varpi,\gamma}) \cdot A_{\beta,\varpi}^{-1}$, where $M_{\beta,\varpi,\gamma} = C_{\beta,\varpi,\gamma,1} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,2}^T + C_{\beta,\varpi,\gamma,2} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,1}^T - C_{\beta,\varpi,\gamma,2} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,2}^T$

• We seek to estimate the federated variance $V_{\beta,fed}$

- 1. Use $\hat{\gamma}_{fed}$ to estimate matrices in V_{γ} for each dataset
- 2. Use sample-size weighting to combine matrices across datasets and obtain $\hat{V}_{\gamma,fed}$

- 1. Use $\hat{\beta}_{fed}$ and $\hat{\gamma}_{fed}$ to estimate $A_{\beta,\varpi}, C_{\beta,\varpi,\gamma,1}, C_{\beta,\varpi,\gamma,2}, D_{\beta,\varpi}$ for each dataset
- 2. Use sample-size weighting to combine these matrices across datasets and obtain $\hat{V}_{\beta,fed}$

Federate individual propensity/outcome models

Description	Assume Stable Known Propensity and Stable Outcome Model (IPW-MLE #1)	Assume Stable Propensity and Stable Outcome Model (IPW-MLE #2)	Assume Stable Misspecified Propensity and Stable Outcome Model (IPW-MLE #3)	Assume Unstable Propensity or Unstable Outcome Model (IPW-MLE #4)
Stable Covariate Distribution	yes or no	yes or no	yes or no	yes or no
Known Propensity	yes	no	no	yes or no
Stable Propensity Model	yes	yes	yes	yes or no
Stable Outcome Model	yes	yes	yes	yes or no
Correct Propensity Model Specification	yes	yes	no	yes or no
Correct Outcome Model Specification	yes or no	yes or no	yes or no	yes or no
Sample Size Assumption	yes or no	yes or no	yes or no	yes
Coefficient $\boldsymbol{\beta}$ federation	(1) Estimate $\boldsymbol{\beta}^{(k)}$ using $\boldsymbol{\gamma}_0$; (2) Federate $\hat{\boldsymbol{\beta}}^{(k)}$ by Hessian weighting.	(1) Federate $\hat{\boldsymbol{\gamma}}^{(k)}$ by Hessian w $\boldsymbol{\beta}^{(k)}$ using $\hat{\boldsymbol{\gamma}}^{\text{fed}}$; (3) Federate $\hat{\boldsymbol{\beta}}$ weighting.	eighting; (2) Estimate $^{(k)}$ by Hessian	Same federation procedure with $\hat{\gamma}^{\mathrm{pad},(k)}$ and $\hat{\mathbf{H}}^{\mathrm{pad},(k)}_{\gamma}$ if propensity models are unstable and estimated, and with $\hat{\beta}^{\mathrm{pad},(k)}$ and $\hat{\mathbf{H}}^{\mathrm{pad},(k)}_{\beta}$ if outcomes models are unstable
Variance $\mathbf{V}_{\boldsymbol{\beta}}$ federation	$\mathbf{V}_{\boldsymbol{\beta}} = \mathbf{A}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{-1} \mathbf{D}_{\boldsymbol{\beta},\boldsymbol{\varpi}} \mathbf{A}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{-1}$ (1) Federate $\hat{\boldsymbol{\gamma}}^{(k)}$ by Hessian using $\hat{\boldsymbol{\gamma}}^{\text{fed}}$; (3) Estimate $\mathbf{A}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{(k)}$ Federate estimated $\mathbf{A}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{(k)}$, $\mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{(k)}$	$\mathbf{V}_{\boldsymbol{\beta}} = \mathbf{A}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{-1} (\mathbf{D}_{\boldsymbol{\beta},\boldsymbol{\varpi}} - \mathbf{M}_{\boldsymbol{\beta},\boldsymbol{\varpi},\boldsymbol{\gamma}}) \mathbf{A}$ $\mathbf{M}_{\boldsymbol{\beta},\boldsymbol{\varpi},\boldsymbol{\gamma}} = \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi}} \mathbf{V}_{\boldsymbol{\gamma}} \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{\top} \text{ for } \mathbf{A}'$ $\mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi},1} \mathbf{V}_{\boldsymbol{\gamma}} \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi},2}^{\top} + \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi},2} \mathbf{V}_{\boldsymbol{\gamma}} \mathbf{C}$ for ATT weighting $\mathbf{V}_{\boldsymbol{\gamma}} = \mathbf{A}_{\boldsymbol{\gamma}}^{-1}$ weighting (skip for known proper ,, $\mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{(k)}, \mathbf{D}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{(k)}, \mathbf{A}_{\boldsymbol{\gamma}}^{(k)}, \text{ and } \mathbf{B}_{\boldsymbol{\gamma}}^{(k)}$ us: ${}^{\mathrm{b}}_{\boldsymbol{\omega}}, \mathbf{D}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{(k)}, \mathbf{A}_{\boldsymbol{\gamma}}^{(k)}$ and $\mathbf{B}_{\boldsymbol{\gamma}}^{(k)}$ by same	$\mathbf{F}_{\boldsymbol{\beta},\boldsymbol{\varpi}}^{-1}$ TE weighting; $\mathbf{M}_{\boldsymbol{\beta},\boldsymbol{\varpi},\boldsymbol{\gamma}} = \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi},1}^{\top} - \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi},2} \mathbf{V}_{\boldsymbol{\gamma}} \mathbf{C}_{\boldsymbol{\beta},\boldsymbol{\varpi},2}^{\top}$ $\left \mathbf{V}_{\boldsymbol{\gamma}} = \mathbf{A}_{\boldsymbol{\gamma}}^{-1} \mathbf{B}_{\boldsymbol{\gamma}} \mathbf{A}_{\boldsymbol{\gamma}}^{-1} \right.$ insity); (2) Estimate $\boldsymbol{\beta}^{(k)}$ ing $\hat{\boldsymbol{\gamma}}^{\text{fed}}$ and $\hat{\boldsymbol{\beta}}^{\text{fed}}$; (4) ple size weighting.	Same federation procedure with $\hat{\gamma}^{\text{pad},(k)}$, estimated $\mathbf{A}^{\text{pad},(k)}_{\gamma}$, $\mathbf{C}^{\text{pad},(k)}_{\beta,\varpi}$ (and $\mathbf{B}^{\text{pad},(k)}_{\gamma}$ if needed) if propensity models are unstable and estimated, and with $\hat{\beta}^{\text{pad},(k)}$, estimated $\mathbf{A}^{\text{pad},(k)}_{\beta,\varpi}$, $\mathbf{D}^{\text{pad},(k)}_{\beta,\varpi}$, $\mathbf{C}^{\text{pad},(k)}_{\beta,\varpi}$ if outcomes models are unstable
Results		Theorem 2		Proposition 4

Federate individual propensity/outcome models

ev c	Description Ombonents				
-) -	Stable Covariate Distribution				
	Stable Propensity Model	yes	yes	yes	
• Mu	ltiple matrices	involved: Hes	ssian, outer pro	oduct of gradie	ent or no.
• Mu	ultiple weighting	e methods inv	olved: Hessian	n weighting, sai	mple size weighting.
	Coefficient β federation	(1) Estimate $\beta^{(k)}$ using γ_0 ; (2) Federate $\hat{\beta}^{(k)}$ by Hessian weighting.	(1) Federate $\hat{\gamma}^{(k)}$ by Hessian $\beta^{(k)}$ using $\hat{\gamma}^{\text{fed}}$; (3) Federate weighting.	weighting; (2) Estimate $\hat{\beta}^{(k)}$ by Hessian	Same federation procedure with $\hat{\gamma}^{\text{pad},(k)}$ and $\hat{\mathbf{H}}^{\text{pad},(k)}_{\gamma}$ if propensity models are unable and estimated,
• Un	Coefficient β federation	(1) Estimate $\beta^{(k)}$ using γ_0 ; (2) Federate $\hat{\beta}^{(k)}$ by Hessian weighting. Cated method	(1) Federate $\hat{\gamma}^{(k)}$ by Hessian $\beta^{(k)}$ using $\hat{\gamma}^{\text{fed}}$; (3) Federate weighting. with a flexible	weighting: (2) Estimate $\hat{\beta}^{(k)}$ by Hessian specification v	Same federation procedure with models are unstable and estimated when propensity/out
• Un mo	restricted federation	(1) Estimate $\beta^{(k)}$ using γ_0 ; (2) Federate $\hat{\beta}^{(k)}$ by Hessian weighting. rated method $\mathbf{D}_{\theta} = \mathbf{A}_{\theta, \varpi}^{-1} \mathbf{D}_{\theta, \varpi} \mathbf{A}_{\theta, \varpi}^{-1}$	(1) Federate $\hat{\gamma}^{(k)}$ by Hessian $\hat{\gamma}^{(k)}$ using $\hat{\gamma}^{\text{fed}}$; (3) Federate $\hat{\gamma}^{(k)}$ weighting. With a flexible $\mathbf{V}_{\beta} = \mathbf{A}_{\beta,\pi}^{-1}(\mathbf{D}_{\beta,\pi} - \mathbf{M}_{\beta,\pi,\gamma})$ $\mathbf{M}_{\beta,\pi,\gamma} = \mathbf{C}_{\beta,\pi}\mathbf{V}_{\gamma}\mathbf{C}_{\beta,\pi}^{-1}$ for \mathbf{A} $\mathbf{C}_{\beta,\pi,1}\mathbf{V}_{\gamma}\mathbf{C}_{\beta,\pi,2}^{-1} + \mathbf{C}_{\beta,\pi,2}\mathbf{V}_{\gamma}$ for ATT weighting $\mathbf{V}_{\gamma} = \mathbf{A}_{\gamma}^{-1}$	weighting; (2) Estimate $\hat{\beta}^{(k)}$ by Hessian specification v $\mathbf{A}_{\beta,\varpi}^{-1}$ ATE weighting; $\mathbf{M}_{\beta,\varpi,\gamma} = \mathbf{C}_{\beta,\varpi,1}^{-1} - \mathbf{C}_{\beta,\varpi,2} \mathbf{V}_{\gamma} \mathbf{C}_{\beta,\varpi,2}^{-1}$	Same federation procedure with $\gamma^{\text{pad},(k)}$ and $\mathbf{H}_{\gamma}^{\text{pad},(k)}$ if propensity models are unstable and estimated, when propensity/out Same federation procedure with $\gamma^{\text{pad},(k)}$, estimated Apad.(k), $C_{\beta,\infty}^{\text{pad},(k)}$ (and $\mathbf{B}_{\gamma}^{\text{pad},(k)}$ if needed) if propensity models are unstable and estimated, and with $\hat{\beta}^{\text{pad},(k)}$,
• Un mo	restricted federation	(1) Estimate $\beta^{(k)}$ using γ_0 ; (2) Federate $\hat{\beta}^{(k)}$ by Hessian weighting. rated method $\mathbf{p} = \mathbf{A}_{\beta,\varpi}^{-1} \mathbf{D}_{\beta,\varpi} \mathbf{A}_{\beta,\varpi}^{-1}$ (1) Federate $\hat{\gamma}^{(k)}$ by Hessian using $\hat{\gamma}^{\text{fed}}$; (3) Estimate $\mathbf{A}_{\beta,\varpi}^{(k)}$, $\mathbf{C}_{\beta,\varpi}^{(k)}$	(1) Federate $\hat{\gamma}^{(k)}$ by Hessian $\hat{\gamma}^{(k)}$ using $\hat{\gamma}^{\text{fed}}$; (3) Federate $\hat{\gamma}^{(k)}$ weighting. With a flexible $V_{\beta} = A_{\beta,\varpi}^{-1}(D_{\beta,\varpi} - M_{\beta,\varpi,\gamma})$ $M_{\beta,\varpi,\gamma} = C_{\beta,\varpi}V_{\gamma}C_{\beta,\varpi}^{-1}$ for A $C_{\beta,\varpi,1}V_{\gamma}C_{\beta,\varpi,2}^{-1} + C_{\beta,\varpi,2}V_{\gamma}$ for ATT weighting $V_{\gamma} = A_{\gamma}^{-1}$ weighting (skip for known prop $\hat{\gamma}_{\alpha}, C_{\beta,\varpi}^{(k)}, D_{\beta,\varpi}^{(k)}, A_{\gamma}^{(k)}$, and $B_{\gamma}^{(k)}$ using $\hat{\gamma}_{\alpha}$ by same	weighting; (2) Estimate $\hat{\beta}^{(k)}$ by Hessian specification v $\mathbf{A}_{\beta,\varpi}^{-1}$ ATE weighting; $\mathbf{M}_{\beta,\varpi,\gamma} = \mathbf{C}_{\beta,\varpi,1}^{-1} - \mathbf{C}_{\beta,\varpi,2} \mathbf{V}_{\gamma} \mathbf{C}_{\beta,\varpi,2}^{-1}$ $\mathbf{V}_{\gamma} = \mathbf{A}_{\gamma}^{-1} \mathbf{B}_{\gamma} \mathbf{A}_{\gamma}^{-1}$ ensity); (2) Estimate $\beta^{(k)}$ using $\hat{\gamma}^{\text{fed}}$ and $\hat{\beta}^{\text{fed}}$; (4) mple size weighting.	Same federation procedure with $\hat{\gamma}^{\text{pad},(k)}$ and $\hat{\mathbf{H}}^{\text{pad},(k)}_{\gamma}$ if propensity models are unstable and estimated, when propensity/out $\hat{\gamma}^{\text{pad},(k)}_{\gamma}$, estimated $\mathbf{A}^{\text{pad},(k)}_{\gamma}$, $\mathbf{C}^{\text{pad},(k)}_{\beta,\infty}$, estimated $\mathbf{A}^{\text{pad},(k)}_{\gamma}$, if needed) if propensity models are unstable and estimated, and with $\hat{\beta}^{\text{pad},(k)}$, estimated, $\mathbf{A}^{\text{pad},(k)}_{\beta,\infty}$, $\mathbf{C}^{\text{pad},(k)}_{\beta,\infty}$, $\mathbf{D}^{\text{pad},(k)}_{\beta,\infty}$, $\mathbf{C}^{\text{pad},(k)}_{\beta,\infty}$, if outcomes models are unstable

Federation with treatment effect heterogeneity

- An interactive outcome model specification: e.g., $\log \frac{P(Y=1|X,W)}{P(Y=0|X,W)} = W\beta_{W} + W \cdot X^{T}\beta_{wx} + X^{T}\beta_{x}$
 - Heterogeneous treatment effect: The treatment effect on the log-odds ratio is $\beta_w + X^T \beta_{wx}$
 - Our federation procedure continues to work
 - If β_{wx} is stable across some datasets, federation increases the precision of $\hat{\beta}_{wx}$

Framework for federated causal inference

Dataset A

Dataset **B**

2. Estimate propensityand outcome modelsfor each dataset

 $\hat{\beta}_A, \hat{V}_A$

 $\hat{\beta}_B, \hat{V}_B$

3. Determine which conditions hold

Stable
Stable
Correct Spec
✓

6. Output

4. Federate propensity models across datasets

5. Federate outcome models across datasets

Asymptotic results

Federated Causal Inference in Heterogeneous Observational Data

Asymptotic distribution of federated IPW-MLE

Theorem 1. Suppose the regularity conditions for the parametric propensity and outcome models hold. $\hat{\beta}_{fed}$ and $\hat{V}_{\beta,fed}$ are the federated coefficients and variance from our federated IPW-MLE. $\hat{\beta}_{pooled}$ and $\hat{V}_{\beta,pooled}$ are the estimated coefficients and variance from IPW-MLE on the combined individual-level data. As the sample size of each dataset grows to infinity, we have

$$n_{pooled}^{1/2} \cdot \hat{V}_{\beta, pooled}^{-1/2} \cdot \left(\hat{\beta}_{fed} - \beta_0\right) \xrightarrow{d} N(0, 1)$$
 Eq. (1)

where n_{pooled} is the total sample size. If we replace $\hat{\beta}_{fed}$ by $\hat{\beta}_{pooled}$ and/or replace $\hat{V}_{\beta,pooled}$ by $\hat{V}_{\beta,fed}$, Eq. (1) continues to hold.

- Theorem 1 implies
 - 1. $\hat{\beta}_{fed}$ is doubly robust and asymptotically normal
 - 2. $\hat{\beta}_{fed}$ is as efficient as $\hat{\beta}_{pooled}$
 - 3. $\hat{V}_{\beta,fed}$ is consistent

\triangleright Our federated IPW-MLE provides valid confidence intervals for β_0

Asymptotic distribution of federated AIPW

Theorem 2. Suppose at least one of the propensity and outcome models are correctly specified. $\hat{\tau}_{fed}$ and $\hat{V}_{\tau,fed}$ are the federated coefficients and variance from our federated AIPW. $\hat{\tau}_{pooled}$ and $\hat{V}_{\tau,pooled}$ are the estimated treatment effect and its variance from AIPW on the combined individual-level data. As the sample size of each dataset grows to infinity, we have

$$n_{pooled}^{1/2} \cdot \hat{V}_{\tau,pooled}^{-1/2} \cdot \left(\hat{\tau}_{fed} - \tau_0\right) \xrightarrow{d} N(0,1)$$
 Eq. (2)

where n_{pooled} is the total sample size. If we replace $\hat{\tau}_{fed}$ by $\hat{\tau}_{pooled}$ and/or replace $\hat{V}_{\tau,pooled}$ by $\hat{V}_{\tau,fed}$, Eq. (2) continues to hold.

- Theorem 2 implies
 - 1. $\hat{\tau}_{fed}$ is doubly robust and asymptotically normal
 - 2. $\hat{\tau}_{fed}$ is as efficient as $\hat{\tau}_{pooled}$
 - 3. $\hat{V}_{\tau,fed}$ is consistent

 \triangleright Our federated AIPW provides valid confidence intervals for τ_0 and the treatment coefficient

Empirical results

Federated Causal Inference in Heterogeneous Observational Data

Empirical applications: Selecting a federation method

- Which method should we use to federate MarketScan and Optum?
 - We do not know the ground truth of the result on the combined data
- Select a method based on sampling from one dataset and and federation of subsamples

Procedure of sampling and federation

6. Apply this method to federate two datasets

5. Output the method with the min MAE

 \hat{eta}_{fed}^{unr} , \widehat{V}_{fed}^{unr}

2. Estimate propensity and outcome models for each dataset 3. Federate propensity and outcome models across datasets by various methods

4. Compare with that from the combined data

 $\hat{eta}_{ivw}, \hat{V}_{ivw}$

 $\hat{eta}_{fed}^{unr}, \widehat{V}_{fed}^{unr}$

Procedure of sampling and federation

2. Estimate propensity and outcome models for each dataset

 \hat{eta}_A, \hat{V}_A

 \hat{eta}_B, \hat{V}_B

3. Federate propensity and outcome models across datasets by various methods

 $\hat{\beta}_{fed}^{unr}, \hat{V}_{fed}^{unr}$

6. Apply this method to federate two datasets

5. Output the method with the min MAE

 \hat{eta}_{fed}^{unr} , \widehat{V}_{fed}^{unr}

4. Compare with that from the combined data

 $\hat{\beta}_M, \hat{V}_M$

Results based sampling from one dataset

- Restricted model: Parameters in the propensity and outcome models are stable across subsamples
 - On the combined data: $\log \frac{P(W=1|X)}{P(W=0|X)} = X^T \gamma_x$ and $\log \frac{P(Y=1|X,W)}{P(Y=0|X,W)} = W \beta_w + X^T \beta_x$
- Unrestricted model: Parameters of covariates in the propensity and outcome models are unstable
 - On the combined data: $\log \frac{P(W=1|X)}{P(W=0|X)} = X^T \gamma_x^{(k)}$ and $\log \frac{P(Y=1|X,W)}{P(Y=0|X,W)} = W \beta_w + X^T \beta_x^{(k)}$, k indicates the subsample a patient belongs to

	$\hat{eta}_{w, ext{bm}}^{\mathbf{r}} \ \mathbf{mean}$	$\hat{eta}_{w, ext{ivw}} \ \mathbf{MAE}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \mathbf{MAE}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \mathbf{MAE}$		$\hat{eta}_{w, ext{bm}}^{ ext{unr}}$ mean	$egin{array}{c} \hat{eta}_{w, ext{ivw}} \ \mathbf{MAE} \end{array}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \mathbf{MAE}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \mathbf{MAE}$
MS ARD MS PNA Optum PNA	-0.7096 -0.3019 -0.1832	$\begin{array}{c} 0.9128 \\ 0.3883 \\ 0.0536 \end{array}$	$0.0526 \\ 0.0094 \\ 0.0011$	$0.0780 \\ 0.0115 \\ 0.0043$	MS ARD MS PNA Optum PNA	-0.7495 -0.3034 -0.1852	0.8728 0.3869 0.0517	$0.1089 \\ 0.0144 \\ 0.0043$	$0.0302 \\ 0.0027 \\ 0.0002$
	$\hat{V}^{\mathbf{r}}_{w,\mathrm{bm}}$	$\hat{V}_{w, ext{ivw}}$	$\hat{V}_{w, ext{ipw-mle}}^{ ext{r.fed}}$	$\hat{V}_{w, ext{ipw-mle}}^{ ext{unr.fed}}$		$\hat{V}^{\mathbf{unr}}_{w,\mathrm{bm}}$	$\hat{V}_{w,\mathrm{ivw}}$	$\hat{V}_{w,\mathrm{ipw-mle}}^{\mathbf{r}.\mathrm{fed}}$	$\hat{V}_{w, ext{ipw-mle}}^{ ext{unr.fed}}$
	mean	MAE	MAE	MAE		mean	MAE	MAE	MAE

Results based sampling from one dataset

- On the combined individual-level data
 - Restricted benchmark $(\hat{\beta}_{w,bm}^r \text{ and } \hat{V}_{w,bm}^r)$: Estimates of β_x and its variance in $\log \frac{P(Y=1|X,W)}{P(Y=0|X,W)} = W \beta_w + X^T \beta_x$
 - Unrestricted benchmark $(\hat{\beta}_{w,bm}^{unr} and \hat{V}_{w,bm}^{unr})$: Estimates of β_x and its variance in $\log \frac{P(Y=1|X,W)}{P(Y=0|X,W)} = W\beta_w + X^T \beta_x^{(k)}$

	$egin{arr} \hat{eta}_{w, ext{bm}}^{\mathbf{r}}\ \mathbf{mean} \end{array}$	$\hat{eta}_{w, ext{ivw}}$ MAE	$egin{aligned} \hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \ extbf{MAE} \end{aligned}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \mathbf{MAE}$		$egin{arr} \hat{eta}_{w, ext{bm}}^{ ext{unr}}\ ext{mean} \ ext{mean} \end{array}$	$\hat{eta}_{w, ext{ivw}}$ \mathbf{MAE}	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \mathbf{MAE}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \mathbf{MAE}$
MS ARD MS PNA Optum PNA	-0.7096 -0.3019 -0.1832	$\begin{array}{c} 0.9128 \\ 0.3883 \\ 0.0536 \end{array}$	$0.0526 \\ 0.0094 \\ 0.0011$	$0.0780 \\ 0.0115 \\ 0.0043$	MS ARD MS PNA Optum PNA	-0.7495 -0.3034 -0.1852	$0.8728 \\ 0.3869 \\ 0.0517$	$0.1089 \\ 0.0144 \\ 0.0043$	$0.0302 \\ 0.0027 \\ 0.0002$
	$egin{array}{c c} \hat{V}^{\mathbf{r}}_{w,\mathrm{bm}} & \ \mathbf{mean} & \ \mathbf{mean} & \ \end{array}$	$\hat{V}_{w, ext{ivw}}$ MAE	$egin{array}{c} \hat{V}^{\mathbf{r}. ext{fed}}_{w, ext{ipw-mle}} & \mathbf{MAE} \end{array}$	$\hat{V}^{ extsf{unr.fed}}_{w, extsf{ipw-mle}} \ extsf{MAE}$		$egin{arr} \hat{V}^{\mathbf{unr}}_{w,\mathrm{bm}}\ \mathbf{mean} \end{array}$	$\hat{V}_{w, ext{ivw}}$ MAE	$\hat{V}^{\mathbf{r}. ext{fed}}_{w, ext{ipw-mle}} \mathbf{MAE}$	$\hat{V}^{ extsf{unr.fed}}_{w, extsf{ipw-mle}} \ extsf{MAE}$
MS ARD	0.0966	0.0690	0.0282	0.0192	MS ARD	0.0835	0.0559	0.0159	0.0054

Results based sampling from one dataset (restricted benchmark)

		Our federated	Our federated
		method for IPW-	method for IPW-
		MLE assuming a	MLE assuming an
Destricted		restricted model on	unrestricted model or
benchmark	IVW	the combined data	the combined data

	$egin{arr} \hat{eta}_{w, ext{bm}}^{\mathbf{r}}\ \mathbf{mean} \end{array}$	$\begin{vmatrix} \hat{eta}_{w,\mathrm{ivw}} \ \mathbf{MAE} \end{vmatrix}$	$egin{array}{c} \hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \ extbf{MAE} \ extbf{MAE} \end{array}$	$egin{array}{c} \hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \ extbf{MAE} \ extbf{MAE} \end{array}$		$egin{arr} \hat{eta}_{w, ext{bm}}^{ ext{unr}} \ ext{mean} \ ext{mean} \end{array}$	$egin{array}{c} \hat{eta}_{w, ext{ivw}} \ \mathbf{MAE} \end{array}$	$egin{aligned} \hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \ extbf{MAE} \end{aligned}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \mathbf{MAE}$
MS ARD MS PNA Optum PNA	-0.7096 -0.3019 -0.1832	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 0.0526 \\ 0.0094 \\ 0.0011 \end{array}$	$0.0780 \\ 0.0115 \\ 0.0043$	MS ARD MS PNA Optum PNA	-0.7495 -0.3034 -0.1852	$\begin{array}{c} 0.8728 \\ 0.3869 \\ 0.0517 \end{array}$	$0.1089 \\ 0.0144 \\ 0.0043$	$0.0302 \\ 0.0027 \\ 0.0002$
	$egin{array}{c c} \hat{V}^{\mathbf{r}}_{w,\mathrm{bm}} \ \mathbf{mean} \end{array}$	$\begin{vmatrix} \hat{V}_{w,\mathrm{ivw}} \\ \mathbf{MAE} \end{vmatrix}$	$egin{array}{c} \hat{V}^{\mathbf{r}. ext{fed}}_{w, ext{ipw-mle}} \ \mathbf{MAE} \end{array}$	$egin{array}{c} \hat{V}^{ extsf{unr.fed}}_{w, extsf{ipw-mle}} \ extsf{MAE} \end{array}$		$egin{array}{c} \hat{V}^{\mathbf{unr}}_{w,\mathrm{bm}} \ \mathbf{mean} \end{array}$	$egin{array}{c} \hat{V}_{w, ext{ivw}} \ \mathbf{MAE} \end{array}$	$\hat{V}^{\mathbf{r}. ext{fed}}_{w, ext{ipw-mle}} \mathbf{MAE}$	$\hat{V}^{ extsf{unr.fed}}_{w, extsf{ipw-mle}} \ extsf{MAE}$
MS ARD MS PNA	0.0966 0.0244	0.0690	0.0282 0.0024	0.0192 0.0006	MS ARD MS PNA	0.0835	0.0559	0.0159 0.0022	0.0054 0.0002

Results based sampling from one dataset (unrestricted benchmark)

Unrestricted benchmark

IVW

Our federated method for IPW-MLE assuming a restricted model on the combined data Our federated method for IPW-MLE assuming an unrestricted model on the combined data

	$\hat{eta}_{w, ext{bm}}^{\mathbf{r}}$ mean	$egin{array}{c} \hat{eta}_{w, ext{ivw}} \ \mathbf{MAE} \end{array}$	$egin{aligned} \hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} & & & & & & & & & & & & & & & & & & $	$egin{array}{c} \hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} \ extbf{MAE} \end{array}$		$egin{arr} \hat{eta}_{w, ext{bm}}^{ ext{unr}}\ ext{mean} \ ext{mean} \end{array}$	$\left egin{array}{c} \hat{eta}_{w,\mathrm{ivw}} \ \mathbf{MAE} \end{array} ight $	$egin{array}{c} \hat{eta}_{w, ext{ipw-mle}}^{ ext{r.fed}} \ extbf{MAE} \ extbf{MAE} \end{array}$	$\hat{eta}_{w, ext{ipw-mle}}^{ ext{unr.fed}} extbf{MAE}$
MS ARD MS PNA Optum PNA	-0.7096 -0.3019 -0.1832	$\begin{array}{c} 0.9128 \\ 0.3883 \\ 0.0536 \end{array}$	$0.0526 \\ 0.0094 \\ 0.0011$	$0.0780 \\ 0.0115 \\ 0.0043$	MS ARD MS PNA Optum PNA	$ -0.7495 \\ -0.3034 \\ -0.1852$	$\begin{array}{c c} 0.8728 \\ 0.3869 \\ 0.0517 \end{array}$	$\begin{array}{c} 0.1089 \\ 0.0144 \\ 0.0043 \end{array}$	$\begin{array}{c} 0.0302 \\ 0.0027 \\ 0.0002 \end{array}$
	$\hat{V}^{\mathbf{r}}_{w, ext{bm}}$ mean	$egin{array}{c} \hat{V}_{w,\mathrm{ivw}} \ \mathbf{MAE} \end{array}$	$egin{array}{c} \hat{V}^{\mathbf{r}. ext{fed}}_{w, ext{ipw-mle}} & \mathbf{MAE} \end{array}$	$\hat{V}^{ extsf{unr.fed}}_{w, extsf{ipw-mle}} \mathbf{MAE}$		$egin{arr} \hat{V}^{\mathbf{unr}}_{w,\mathrm{bm}}\ \mathbf{mean} \end{array}$	$\left egin{array}{c} \hat{V}_{w,\mathrm{ivw}} \ \mathbf{MAE} \end{array} ight $	$egin{array}{c} \hat{V}^{\mathbf{r}. ext{fed}}_{w, ext{ipw-mle}} \ \mathbf{MAE} \end{array}$	$egin{array}{c} \hat{V}^{ extsf{unr.fed}}_{w, extsf{ipw-mle}} \ extsf{MAE} \ extsf{MAE} \end{array}$
MS ARD MS PNA Optum PNA	0.0966 0.0244 0.0031	0.0690 0.0103 0.0003	$\begin{array}{c} 0.0282 \\ 0.0024 \\ 0.0001 \end{array}$	$\begin{array}{c} 0.0192 \\ 0.0006 \\ 0.0000 \end{array}$	MS ARD MS PNA Optum PNA	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 0.0559 \\ 0.0102 \\ 0.0003 \end{array}$	$\begin{array}{c} 0.0159 \\ 0.0022 \\ 0.0001 \end{array}$	$0.0054 \\ 0.0002 \\ 0.0000$

Procedure of sampling and federation

2. Estimate propensity and outcome models for each dataset

 \hat{eta}_A , \hat{V}_A

 \hat{eta}_B , \widehat{V}_B

4. Compare with that

from the combined data

 $\hat{\beta}_M, \hat{V}_M$

3. Federate propensity and outcome models across datasets by various methods

 \hat{eta}_{fed}^{unr} , \hat{V}_{fed}^{unr}

6. Apply this method to

federate two datasets

5. Output the method

 $\hat{\beta}_{fed}^{unr}, \hat{V}_{fed}^{unr}$

with the min MAE

Applying the selected method to combine two datasets

- The federated estimate from the unrestricted federated method lies between the estimates on MarketScan and Optum
- Based on information from both datasets, we find that taking alphablockers reduces the log odds of the adverse outcome

Conclusion

- 1. Federated methods that only use summary-level information from heterogeneous datasets
 - Depend on the stability and model specification conditions of propensity and outcome models
 - Two main categories: IPW-MLE and AIPW; one supplementary category: MLE
- 2. Asymptotic guarantees for federated point and variance estimators
 - Doubly robust, efficient, and asymptotic normal
- 3. A procedure to select federated methods on empirical datasets

Supplementary slides

Federated Causal Inference in Heterogeneous Observational Data

Ideal: an RCT

Ideal: an RCT

Ideal: an RCT

Retrospective analysis

In the past year, has the patient:

- 1. Taken a 180+ day supply of α -blockers?
- 2. Presented with comorbidities (e.g. heart failure, PTSD, etc.)?
- 3. Been admitted to the hospital as an inpatient?

Retrospective analysis

During inpatient admission:

- 1. Does the patient get ventilated?
- 2. Does the patient die?

Within-group prevalence of adverse outcomes

Treatment 0 1

7.5

5.0

• Within-group prevalence of adverse outcomes (ventilation, ventilation followed by death) is lower for the treated group on both datasets

\blacktriangleright But we need to account for confounding

Imbalance between the treated and control groups

- Covariates are imbalanced
 - Prostate problems tend to worsen with age
 - Thus, treated patients are generally older

Solution: Combine heterogeneous patient data?

Ideal: Combine patient-level information on MarketScan and Optum

- More data for minority patient groups
- Increases statistical power for treatment effect estimation

Problem: Not allowed!

- Legal issues (data use agreements, data owner competition)
- Ethical issues (patient privacy)

Solution: Combine summary statistics

This paper proposes categories of federated methods

Method: On each dataset individually, calculate carefully constructed statistics related to both treatment assignment and patient outcomes

Objective: Obtain point and variance estimates that are asymptotically the same as those from the combined individual-level data

Asymptotic distribution of IPW-MLE continued

Lemma 1. Suppose the regularity conditions for the parametric propensity and outcome models hold. As the sample size $n \to \infty$, the IPW-MLE $\hat{\beta}$ is consistent and asymptotically normal

$$n^{1/2} \cdot (\hat{\beta} - \beta_0) \xrightarrow{d} N(0, V_\beta)$$

where $V_{\beta} = A_{\beta,\varpi}^{-1} \cdot (D_{\beta,\varpi} - M_{\beta,\varpi,\gamma}) \cdot A_{\beta,\varpi}^{-1}$, $M_{\beta,\varpi,\gamma} = C_{\beta,\varpi,\gamma,1} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,2}^{T} + C_{\beta,\varpi,\gamma,2} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,1}^{T} - C_{\beta,\varpi,\gamma,2} \cdot V_{\gamma} \cdot C_{\beta,\varpi,\gamma,2}^{T}$ and $V_{\gamma} = A_{\gamma}^{-1} \cdot B_{\gamma} \cdot A_{\gamma}^{-1}$

Matrix	Expression	Matrix	Expression
$\mathbf{A}_{oldsymbol{eta}}$	$\mathbb{E}\Big[-rac{\partial^2\log f(y \mathbf{x},w,oldsymbol{eta})}{\partialoldsymbol{eta}oldsymbol{eta}^ op}\Big]$	$ $ A _{γ}	$\mathbb{E}\Big[-rac{\partial^2\log e(\mathbf{x},oldsymbol{\gamma})}{\partialoldsymbol{\gamma}\partialoldsymbol{\gamma}^ op}\Big]$
$\mathbf{B}_{oldsymbol{eta}}$	$\mathbb{E}\bigg[\frac{\partial \log f(y \mathbf{x}, w, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\big(\frac{\partial \log f(y \mathbf{x}, w, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\big)^{\top}\bigg]$	$ $ \mathbf{B}_{γ}	$\Big\ \mathbb{E}\Big[rac{\partial \log e(\mathbf{x},oldsymbol{\gamma})}{\partialoldsymbol{\gamma}}ig(rac{\partial \log e(\mathbf{x},oldsymbol{\gamma})}{\partialoldsymbol{\gamma}}ig)^{ op}\Big]$
	ATE weighting $\varpi_{i,e_{\gamma}} = \frac{w_i}{e_{\gamma}(\mathbf{x}_i)} + \frac{1-w_i}{1-e_{\gamma}(\mathbf{x}_i)}$		ATT weighting $\varpi_{i,e_{\gamma}} = w_i + \frac{e_{\gamma}(\mathbf{x}_i)}{1 - e_{\gamma}(\mathbf{x}_i)}(1 - w_i)$
$\mathbf{A}_{oldsymbol{eta},arpi}$	$\mathbb{E}\Big[\Big(\frac{w}{e_{\boldsymbol{\gamma}}} + \frac{1-w}{1-e_{\boldsymbol{\gamma}}}\Big)\frac{\partial^2\log f(y \mathbf{x},w,\boldsymbol{\beta})}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^{\top}}\Big]$	$\mathbf{A}_{\boldsymbol{eta},arpi}$	$\mathbb{E}\Big[\Big(w + \frac{e_{\boldsymbol{\gamma}}(1-w)}{1-e_{\boldsymbol{\gamma}}}\Big)\frac{\partial^2\log f(y \mathbf{x},w,\boldsymbol{\beta})}{\partial\boldsymbol{\beta}\partial\boldsymbol{\beta}^\top}\Big]$
$\mathbf{D}_{oldsymbol{eta},arpi}$	$\mathbb{E}\Big[\Big(\tfrac{w}{e_{\boldsymbol{\gamma}}} + \tfrac{1-w}{1-e_{\boldsymbol{\gamma}}}\Big)^2 \tfrac{\partial \log f(y \mathbf{x}, w, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \cdot \Big(\tfrac{\partial \log f(y \mathbf{x}, w, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}}\Big)^{\top}\Big]$	$\mathbf{D}_{\boldsymbol{eta},\varpi}$	$\bigg \mathbb{E} \bigg[\bigg(w + \frac{e_{\gamma}(1-w)}{1-e_{\gamma}} \bigg)^2 \frac{\partial \log f(y \mathbf{x}, w, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \cdot \big(\frac{\partial \log f(y \mathbf{x}, w, \boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \big)^\top \bigg]$
$\mathbf{C}_{oldsymbol{eta},arpi}$	$\mathbb{E}\bigg[\bigg(\frac{w}{e_{\boldsymbol{\gamma}}^2} - \frac{1\!-\!w}{(1\!-\!e_{\boldsymbol{\gamma}})^2}\bigg)\frac{\partial \log f(y \mathbf{x},\!w,\!\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \cdot \big(\frac{\partial \log e(\mathbf{x},\!\boldsymbol{\gamma})}{\partial \boldsymbol{\gamma}}\big)^{\top}\bigg]$	$\mathbf{C}_{\boldsymbol{\beta}, \varpi, 1}$	$\mathbb{E}\Big[-\tfrac{(1-w)}{(1-e_{\boldsymbol{\gamma}})^2} \tfrac{\partial \log f(y \mathbf{x},w,\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \cdot \big(\tfrac{\partial \log e(\mathbf{x},\boldsymbol{\gamma})}{\partial \boldsymbol{\gamma}} \big)^\top \Big]$
		$\mathbf{C}_{oldsymbol{eta},arpi,2}$	$ \left \mathbb{E}\left[\left(\frac{w}{e_{\boldsymbol{\gamma}}} - \frac{e_{\boldsymbol{\gamma}}(1-w)}{(1-e_{\boldsymbol{\gamma}})^2}\right) \frac{\partial \log f(y \mathbf{x},w,\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} \cdot \left(\frac{\partial \log e(\mathbf{x},\boldsymbol{\gamma})}{\partial \boldsymbol{\gamma}}\right)^{\top}\right] \right. $

In the definitions of these matrices, e_{γ} denotes $e_{\gamma}(\mathbf{x}_i) = e(\mathbf{x}_i, \gamma)$ by a slight abuse of notation.

Research question

- Question: Does taking alpha-blockers reduce the probability of the adverse outcome (ventilation (followed by death))?
- We seek to use both datasets (MarketScan and Optum) to answer this question

