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Roadmap
• How can we perform causal analysis across multiple datasets with similar structure 

that cannot be combined?
• Some stability of  conditional treatment effects across datasets (so there is a potential 

benefit to combining them)

1. Motivating example (Alpha-blockers)

2. Challenges in federated causal inference

3. Federated methods for causal inference

4. Asymptotic results

5. Empirical studies
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Can alpha blockers improve patient outcomes?

• Prazosin shown to prevent cytokine storms in mice [Staedtke V et al. 2018]

• Question: do 𝛼!-adrenergic receptors (𝛼-blocker drugs) provide a 
prophylactic benefit for patients at risk of  respiratory distress?
• Ideal is run an RCT, but this is not available!
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Can we use observational claims data to learn about effect 
of  taking alpha blockers?

Patient 
ID

Patient 
Info

Date Inpatient or 
Outpatient?

Diagnoses Procedures Prescribed 
Drugs & 
Duration

Expired?

M / 58 Feb 2014 Doc’s Office BPH Colonoscopy tamsulosin 
0.4mg / 30 
days of  pills

N

M / 59 Jan 2015 Hospital ARD, BPH Ventilation -- N

F / 70 Dec 2015 Hospital Cancer, 
Pneumonia

Ventilation -- Y
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More details about retrospective analysis



We have claims data from multiple sources
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MarketScan database

Optum database

PROPRIETARY 
PATIENT DATA

PROPRIETARY 
PATIENT DATA



Challenges in federated causal inference
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Challenges in causal inference using multiple datasets
• Challenge 1: Proprietary patient data cannot be combined at the individual 

level

• Challenge 2: Datasets are heterogeneous
• Heterogeneity means demographics, confounders, propensity and outcome models can 

be different

• Challenge 3: Account for selection bias

• Challenge 4: Require both estimation and inference methods

ØChallenges 3 and 4 separate our work from the federated learning literature 
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Our contribution
1. A systematic framework to federate point and variance estimates across datasets

• Two main categories: IPW-MLE and AIPW; one supplementary category: MLE

• Weight summary-level information cleverly depending on stability / model specification condition

• Computationally efficient

2. Asymptotic guarantees for federated point and variance estimators

• Federated point and variance estimators: Asymptotically the same as those using the combined individual-
level data

• Federated point estimator: Doubly robust, efficient, and asymptotic normal

• Federated variance estimator: Consistency

3. A procedure to select federated methods on empirical datasets
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Inclusion criteria & confounding
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X
Observed Confounders

(Age, comorbidities)

Treatment 
(Taking Alpha-Blockers)

Outcome 
(Ventilation / Dying)

X



Imbalance between the treated and control groups
• Covariates are imbalanced
• Prostate problems tend to 

worsen with age
• Treated patients are generally 

older
• A larger fraction of  treated 

patients have comorbidities 
and are less healthy
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year

Comorbidities 

age

Patient health 

MarketScan



Account for confounders
• This paper: Make the best possible use of  multiple datasets to estimate 

average treatment effect while adjusting for observed confounders
• Can get efficient, doubly robust estimates if  we can accomplish these two 

goals:
1. Assignment model: Estimate the relationship between treatment assignment and 

observed confounders, and use the resulting predictions to balance observed 
confounders across treatment and control groups

2. Outcome model: Estimate the relationship between the outcome and observed 
confounders, e.g., age, comorbidities, general patients’ health

• Challenges in health data
1. Small, siloed datasets
2. Many confounders
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Assignment model
• The relationship between treatment assignment and observed confounders 

can be specified by
• Parametric model 

• Model specification: e.g., log !(#$%|')
!(#$)|')

= 𝑋*𝛾+
• 𝑊: Taking alpha−blockers
• 𝑋: Age, comorbidities, general patients’ health, …

• Estimation: Maximum-likelihood estimator (MLE), e.g., (𝛾+ = argmax
,!

∑- log
!(#"$%|'",,!)
!(#"$)|'",,!)

• This paper: Leverage multiple datasets to improve the precision of  (𝛾+

• Non-linear/Non-parametric model
• Estimation: e.g., causal forests
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Outcome model
• The relationship between treatment assignment and observed confounders 

can be specified by
• Parametric model 

• Model specification: e.g., log !(/$%|',#)
!(/$)|',#)

= 𝑊𝛽0 + 𝑋*𝛽+
• Y : Ventilation (followed by death)
• 𝛽! : The effect of  taking alpha-blockers in reducing the log-odds of  adverse outcome

• Estimation:  Inverse-propensity weighted maximum-likelihood estimator (IPW-MLE, 
Wooldridge, 2002, 2007) or maximum-likelihood estimator (MLE)

• This paper: Leverage multiple datasets to improve the precision of  1𝛽0 and 1𝛽+

• Non-linear/Non-parametric model
• Estimation: e.g., causal forests
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Inverse-propensity weighted maximum-likelihood estimator

• Inverse-propensity weighted maximum-likelihood estimator (IPW-MLE) 
balances observed confounders across treatment and control groups

• 𝜛%: Weight for patient 𝑖
• ATE weighting: 𝜛- =

#"
1('")

+ %2#"
%21('")

• ATT weighting: 𝜛- = 𝑊- + (1 −𝑊-)
1('")
%21('")

• 𝑒 𝑋- = 𝑃(𝑊- = 1|𝑋-): Propensity score for patient 𝑖
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( $𝛽&, $𝛽') = arg max
(!,("

∑%𝜛% log
*(,#-.|0#,1#,(",(!)
*(,#-3|0#,1#,(",(!)



Double robustness property of  IPW-MLE
• IPW-MLE is a doubly robust estimator (Wooldridge, 2007, Lumley, 2011)
• $𝛽& and $𝛽' are consistent if

• We have observed relevant covariates
• At least one of  the propensity and outcome models is correctly specified
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( $𝛽&, $𝛽') = arg max
(!,("

∑%𝜛% log
*(,#-.|0#,1#,(",(!)
*(,#-3|0#,1#,(",(!)



AIPW: Another doubly robust estimator
• Augmented inverse-propensity weighted (AIPW) estimator is also doubly 

robust
• �̂�341 =

%
5
∑- (𝜇% 𝑋- − (𝜇) 𝑋- + #"

1̂ '"
𝑌- − (𝜇% 𝑋- − %2#"

%21̂ '"
𝑌- − (𝜇) 𝑋- , where �̂�4 𝑋%

= 𝐸[𝑌%(𝑑)]

• This paper: Leverage multiple datasets to improve the precision of  �̂�4 𝑋% and 
�̂� 𝑋% (that are estimated parametrically)
• Built on the results of  MLE and IPW-MLE
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Results from multiple sources
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• This paper: Can we narrow down the confidence intervals by using the 
information in two datasets? 

• Taking alpha-blockers seems to reduce the log odds of  the adverse 
outcome on both datasets
• "𝛽? from IPW-MLE on MarketScan and Optum



Challenges in federated methods for IPW-MLE  
• Recall IPW-MLE estimates 𝛽? and 𝛽@ by maximizing the inverse propensity 

weighted likelihood function
• The estimation error of  the propensity model carries over to the estimation of  𝛽&

and 𝛽'

• The precision of  $𝛽& and $𝛽' depend on the (weighted) gradient and Hessian of  
propensity and outcome models in a complex manner

• Key challenges in federated methods for IPW-MLE: Need to account for many 
conditions related to model specification and heterogeneity across datasets

• What happens if  we ignore these challenges and use off-the-shelf  methods, e.g., 
inverse variance weighting (IVW)?
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Asymptotic distribution of  IPW-MLE

ØMatrices in 𝑉7 depend on how the propensity and outcome models are specified, whether they are 
correctly specified, and whether ATE or ATT weighting is used

3/2/22 Federated Causal Inference in Heterogeneous Observational Data

Lemma 1. Suppose the regularity conditions for the parametric propensity and outcome models hold. As the 
sample size 𝑛 → ∞, the IPW-MLE 8𝛽 is consistent and asymptotically normal   

𝑛"/$ ⋅ 8𝛽 − 𝛽% →
&
𝑁(0, 𝑉')

where 𝑉' = 𝐴',)*" ⋅ 𝐷',) −𝑀',),+ ⋅ 𝐴',)*" and 
• 𝐴',) : weighted Hessian of  the outcome model
• 𝐷',) : weighted outer product of  the gradient of  the outcome model
• 𝑀',),+ = 𝐶',),+," ⋅ 𝑉+ ⋅ 𝐶',),+,$, + 𝐶',),+,$ ⋅ 𝑉+ ⋅ 𝐶',),+,", − 𝐶',),+,$ ⋅ 𝑉+ ⋅ 𝐶',),+,$,

• 𝑉+ = 𝐴+*" ⋅ 𝐵+ ⋅ 𝐴+*"
• 𝐴+: Hessian of  the propensity model
• 𝐵+: outer product of  the gradient of  the propensity model

• 𝐶',),+," and 𝐶',),+,$: weighted outer products of  the gradient of  the propensity model and the gradient of  
the outcome model

More details



A popular approach: Inverse-variance weighting (IVW)

Meta-analysis (no covariates):
1. Estimate the treatment effect 𝜏 and variance 

𝜎BC on each dataset
2. Combine coefficients by inverse variance 

weighting 
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�̂�B, (𝜎BC

�̂�D , (𝜎DC

�̂�EF? = (𝜎BGC + (𝜎DGC G! (𝜎BGC�̂�B + (𝜎DGC�̂�D

DerSimonian and Laird (1986), Whitehead and Whitehead 
(1991), Sutton and Higgins (2008) 



A popular approach: Inverse-variance weighting (IVW)
Linear regression (adjust for covariates):
1. Estimate coefficients 𝛽 and variance 𝑉 on 

each dataset
2. Combine coefficients by inverse variance 

weighting 
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"𝛽B, ,𝑉B

"𝛽D , ,𝑉D

"𝛽EF? = ,𝑉BG! + ,𝑉DG!
G! ,𝑉BG! "𝛽B + ,𝑉DG! "𝛽D

Du, Han, and Chen (2004), Karr, Lin, Sanil, and Reiter (2005) 
(machine learning and security)



Inverse-variance weighting (IVW)

Pro: Inverse-variance weighting average has the 
least variance among all averages

Con: Inverse-variance weighting does not 
account for selection bias 
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"𝛽B, ,𝑉B

"𝛽D , ,𝑉D

"𝛽EF? = ,𝑉BG! + ,𝑉DG!
G! ,𝑉BG! "𝛽B + ,𝑉DG! "𝛽D



Combining heterogeneous patient data by IVW
• Concern: The IVW pooled IPW-MLE estimate lies outside of  those on 

MarketScan and Optum
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What is wrong with IVW?
• MarketScan and Optum have different age populations
• Coefficients and variance-covariance matrices across 

datasets are heterogeneous 
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What is wrong with IVW?
• MarketScan and Optum have different age populations
• Coefficients and variance-covariance matrices across datasets 

are heterogeneous
• Coefficient of  age in outcome model switches sign (controlling for 

other covariates)
• Covariance between treatment and age switches sign
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$𝛽%E& = :𝑉FG. + :𝑉HG.
G. :𝑉FG. $𝛽F + :𝑉HG. $𝛽H = −0.71

1.42

8𝛽- =
8𝛽-,!
8𝛽-,./0

= −0.67
2.03

8𝛽1 =
8𝛽1,!
8𝛽1,./0

= −0.02
−0.15

P𝑉-*" =
51.6 −28.6
−28.6 474.02

P𝑉1*" =
55.34 14.61
14.61 187.08



What is wrong with IVW?
• Coefficients on two data sets are 𝛽- =

𝛽-,!
𝛽-,./0

and	𝛽1 =
𝛽1,!
𝛽1,./0

• 𝛽-,./0 > 0 and	𝛽1,./0 < 0 (in our application, 𝛽-,./0 = 2.03 and 𝛽1,./0 = −0.15)

• Inverse variance-covariance matrix is 𝑉-*" =
𝑣-,"" 𝑣-,"$
𝑣-,"$ 𝑣-,$$ and 𝑉1*" =

𝑣1,"" 𝑣1,"$
𝑣1,"$ 𝑣1,$$

• 𝑣-,"$ < 0 and 𝑣1,"$ > 0 (in our application, 𝑣-,"$ = −28.6 and 𝑣1,"$ = 14.61)

• Without loss of  generality, assume 𝛽-,! < 𝛽1,! (in our application, 𝛽-,! = −0.67 and 𝛽1,! = −0.02)

Ø 𝛽23! < 𝛽-,! when 𝛽-,./0 − 𝛽1,./0 ≫ 𝛽1,! − 𝛽-,!
Ø In our application, 𝛽-,./0 − 𝛽1,./0 = 2.18 and 𝛽1,! − 𝛽-,! = 0.65
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𝛽#$% = 𝑉&'( + 𝑉)'( '( 𝑉&'(𝛽& + 𝑉)'(𝛽)
= 𝛽&,% +

(
+
⋅ 𝑣&,,, + 𝑣),,, ⋅ 𝑣),(( − 𝑣&,(, + 𝑣),(, ⋅ 𝑣),(, ⋅ 𝛽),% − 𝛽&,% + 𝑣),,,𝑣&,(, − 𝑣&,,,𝑣),(, ⋅ 𝛽&,-./ − 𝛽),-./

> 0 > 0 > 0< 0

𝑐 = 𝑣!,## + 𝑣$,## ⋅ 𝑣!,%% + 𝑣$,%% − 𝑣!,#% + 𝑣$,#%
% > 0



Results from our federated IPW-MLE
• The federated coefficient from our approach lies between those from 

MarketScan and Optum 
• The confidence interval is narrower than those from MarketScan and Optum 
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Federated methods for causal inference
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Framework for federated causal inference
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- Stable 🚫
- Correct Spec ✅

Dataset 𝐵

Dataset 𝐴

1. Input

&𝛽! , )𝑉!

&𝛽", )𝑉"

3. Determine which 
conditions hold

4. Federate propensity 
models across datasets

5. Federate outcome 
models across datasets

6. Output

&𝛽#$% , )𝑉#$%

2. Estimate propensity 
and outcome models 
for each dataset



Estimate propensity and outcome models for each dataset

1. Estimate propensity model 𝑃(𝑊 = 1|𝑋) for each dataset
• Parametric model: 𝑃 𝑊 = 1 𝑋 = 𝑒(𝑋, 𝛾)
• Estimate 𝛾 by maximizing the likelihood function (MLE)

2. Estimate outcome model 𝑓(𝑌|𝑋,𝑊) for each dataset
• Parametric model: 𝑓 𝑌 𝑋,𝑊, 𝛽
• Estimate 𝛽 by maximizing the inverse-propensity weighted likelihood function (IPW-MLE)

Ø Estimated propensity and outcome models can be used as the input of  AIPW to 
estimate ATE/ATT for each dataset
• AIPW is consistent even if  one of  the propensity and outcome models is misspecified
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Framework for federated causal inference
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- Stable 🚫
- Correct Spec ✅

Dataset 𝐵

Dataset 𝐴

1. Input

&𝛽! , )𝑉!

&𝛽", )𝑉"

3. Determine which 
conditions hold

4. Federate propensity 
models across datasets

5. Federate outcome 
models across datasets

6. Output

&𝛽#$% , )𝑉#$%

2. Estimate propensity 
and outcome models 
for each dataset



Select conditions to impose (will return to see how)
• Stability conditions across datasets

• Whether the set of  covariates and their joint 
distribution are the same 

• Whether parameters in the 
propensity/outcome model are the same

• Model specification conditions

• Whether the propensity/outcome model is 
correctly specified 
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𝛽- =
𝛽-,!
𝛽-,./0

= −0.67
2.03

𝛽1 =
𝛽1,!
𝛽1,./0

= −0.02
−0.15

True model: log 4(67"|9,:)
4(67%|9,:)

= 𝑊 ⋅ 𝛽! + 𝑎𝑔𝑒 ⋅ 𝛽./0



Framework for federated causal inference
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- Stable 🚫
- Correct Spec ✅

Dataset 𝐵

Dataset 𝐴

1. Input

&𝛽! , )𝑉!

&𝛽", )𝑉"

3. Determine which 
conditions hold

4. Federate propensity 
models across datasets

5. Federate outcome 
models across datasets

6. Output

&𝛽#$% , )𝑉#$%

2. Estimate propensity 
and outcome models 
for each dataset



Flowchart for coefficient federation in IPW-MLE

!𝛾8/9 = $𝐻:,;∗ + $𝐻:,=∗
'( $𝐻:,;∗ !𝛾;∗ + $𝐻:,=∗ !𝛾=∗

• !𝛾>∗ and $𝐻:,>∗ are (zero-padded) coefficient and 
Hessian in the propensity model on dataset 𝑘

• Conceptually we only federate the coefficients 
that are shared/stable across datasets
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Estimate individual 
propensity models 

from MLE

Federate individual 
propensity models 
via Hessian pooling

Estimate individual 
outcome models 
from IPW-MLE

Federate individual 
outcome models 

via Hessian pooling

Propensity 
model is 
stable?

Outcome 
model is 
stable?

YES YES

Split shared and 
dataset-specific 

parameters; generate 
zero padding 

parameter vector and 
Hessian matrix

NO Split shared and 
dataset-specific 

parameters; generate 
zero padding 

parameter vector and 
Hessian matrix

NO

Propensity model Outcome model

1. Use federated propensity model
�̂�<0&(𝑥) to estimate federated 
IPW weight 𝜛<0&

2. Use 𝜛<0& to estimate outcome 
model for each dataset 

(𝛽8/9 = $𝐻?,;
∗ + $𝐻?,=

∗ '( $𝐻?,;
∗ (𝛽;∗ + $𝐻?,=

∗ (𝛽=∗

• (𝛽>∗ and $𝐻?,>∗ are (zero-padded) coefficient and 
Hessian in the outcome model on dataset 𝑘

• Conceptually we only federate the coefficients 
that are shared/stable across datasets



Variance federation in IPW-MLE
• Recall the asymptotic variance of  1𝛽 is 𝑉7 = 𝐴7,8

2% ⋅ 𝐷7,8 −𝑀7,8,, ⋅ 𝐴7,8
2% , 

where 𝑀7,8,, = 𝐶7,8,,,% ⋅ 𝑉, ⋅ 𝐶7,8,,,9
* + 𝐶7,8,,,9 ⋅ 𝑉, ⋅ 𝐶7,8,,,%

* − 𝐶7,8,,,9 ⋅ 𝑉, ⋅ 𝐶7,8,,,9
*

• We seek to estimate the federated variance 𝑉7,:1;
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1. Use (𝛾:1; to estimate matrices in
𝑉, for each dataset 

2. Use sample-size weighting to 
combine matrices across datasets 
and obtain M𝑉,,:1;

1. Use 1𝛽:1; and (𝛾:1; to estimate
𝐴7,8, 𝐶7,8,,,%, 𝐶7,8,,,9, 𝐷7,8 for 
each dataset 

2. Use sample-size weighting to 
combine these matrices across 
datasets and obtain M𝑉7,:1;



Federate individual propensity/outcome models
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Federate individual propensity/outcome models

• Key components

• Multiple matrices involved: Hessian, outer product of  gradient, …

• Multiple weighting methods involved: Hessian weighting, sample size weighting, …

• Unrestricted federated method with a flexible specification when propensity/outcome 
models are unstable
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Federation with treatment effect heterogeneity
• An interactive outcome model specification: e.g., 
log *(,-.|0,1)

*(,-3|0,1)
= 𝑊𝛽& +𝑊 ⋅ 𝑋d𝛽&' + 𝑋d𝛽'

• Heterogeneous treatment effect: The treatment effect on the log-odds ratio is 
𝛽& + 𝑋d𝛽&'

• Our federation procedure continues to work
• If  𝛽0+ is stable across some datasets, federation increases the precision of  1𝛽0+
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Framework for federated causal inference
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- Stable 🚫
- Correct Spec ✅

Dataset 𝐵

Dataset 𝐴

1. Input

&𝛽! , )𝑉!

&𝛽", )𝑉"

3. Determine which 
conditions hold

4. Federate propensity 
models across datasets

5. Federate outcome 
models across datasets

6. Output

&𝛽#$% , )𝑉#$%

2. Estimate propensity 
and outcome models 
for each dataset



Asymptotic results
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Asymptotic distribution of  federated IPW-MLE

• Theorem 1 implies 
1. 8𝛽<0& is doubly robust and asymptotically normal
2. 8𝛽<0& is as efficient as 8𝛽=>>?0&
3. P𝑉',<0& is consistent

ØOur federated IPW-MLE provides valid confidence intervals for 𝛽3
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Theorem 1. Suppose the regularity conditions for the parametric propensity and outcome models hold. 8𝛽<0& and 
P𝑉',<0& are the federated coefficients and variance from our federated IPW-MLE.  8𝛽=>>?0& and P𝑉',=>>?0& are the 
estimated coefficients and variance from IPW-MLE on the combined individual-level data. As the sample size of  
each dataset grows to infinity, we have   

𝑛=>>?0&
"/$ ⋅ P𝑉',=>>?0&

*"/$ ⋅ 8𝛽<0& − 𝛽% →
&
𝑁(0,1) Eq. (1)

where 𝑛=>>?0& is the total sample size. If  we replace 8𝛽<0& by 8𝛽=>>?0& and/or replace P𝑉',=>>?0& by P𝑉',<0& , Eq. (1)
continues to hold.



Asymptotic distribution of  federated AIPW

• Theorem 2 implies 
1. �̂�<0& is doubly robust and asymptotically normal
2. �̂�<0& is as efficient as �̂�=>>?0&
3. P𝑉@,<0& is consistent

ØOur federated AIPW provides valid confidence intervals for 𝜏3 and the treatment coefficient
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Theorem 2. Suppose at least one of  the propensity and outcome models are correctly specified. �̂�<0& and P𝑉@,<0&
are the federated coefficients and variance from our federated AIPW.  �̂�=>>?0& and P𝑉@,=>>?0& are the estimated 
treatment effect and its variance from AIPW on the combined individual-level data. As the sample size of  each 
dataset grows to infinity, we have   

𝑛=>>?0&
"/$ ⋅ P𝑉@,=>>?0&

*"/$ ⋅ �̂�<0& − 𝜏% →
&
𝑁(0,1) Eq. (2)

where 𝑛=>>?0& is the total sample size. If  we replace �̂�<0& by �̂�=>>?0& and/or replace P𝑉@,=>>?0& by P𝑉@,<0& , Eq. (2)
continues to hold.



Empirical results
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Empirical applications: Selecting a federation method
• Which method should we use to 

federate MarketScan and Optum?
• We do not know the ground truth 

of  the result on the combined data

• Select a method based on 
sampling from one dataset and 
and federation of  subsamples
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MarketScan

Optum



Procedure of  sampling and federation
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MarketScan

1. Construct subsamples by 
sampling from one dataset

Subsample 𝐴

Subsample 𝐵

Sam
ple m

ore 

eld
erly

 patie
nts

Sample more 

young patients

Age

&𝛽", )𝑉"

&𝛽! , )𝑉!

&𝛽&'( , )𝑉&'(

&𝛽#$%) , )𝑉#$%)
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…

4. Compare with that 
from the combined data

&𝛽, , )𝑉,

5. Output the method 
with the min MAE

&𝛽#$%*+) , )𝑉#$%*+)

6. Apply this method to 
federate two datasets 

2. Estimate propensity 
and outcome models 
for each dataset

3. Federate propensity and 
outcome models across 
datasets by various methods
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Results based sampling from one dataset
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• Restricted model: Parameters in the propensity and outcome models are stable across subsamples
§ On the combined data: log 4(:7"|9)

4(:7%|9)
= 𝑋,𝛾A and log 4(67"|9,:)

4(67%|9,:)
= 𝑊𝛽! + 𝑋,𝛽A

• Unrestricted model: Parameters of  covariates in the propensity and outcome models are unstable
• On the combined data: log 4(:7"|9)

4(:7%|9)
= 𝑋,𝛾A

(B) and log 4(67"|9,:)
4(67%|9,:)

= 𝑊𝛽! + 𝑋,𝛽A
(B), 𝑘

indicates the subsample a patient belongs to



Results based sampling from one dataset
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• On the combined individual-level data
• Restricted benchmark ( 8𝛽!,CDE and P𝑉!,CDE ): Estimates of  𝛽A and its variance in log 4(67"|9,:)

4(67%|9,:)
= 𝑊𝛽! + 𝑋,𝛽A

• Unrestricted benchmark ( 8𝛽!,CDFGE and P𝑉!,CDFGE ): Estimates of  𝛽A and its variance in log 4(67"|9,:)
4(67%|9,:)

= 𝑊𝛽! + 𝑋,𝛽A
(B)



Results based sampling from one dataset (restricted benchmark)
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IVW

Our federated 
method for IPW-
MLE assuming a 

restricted model on 
the combined data 

Our federated 
method for IPW-
MLE assuming an 

unrestricted model on 
the combined data Restricted

benchmark



Results based sampling from one dataset (unrestricted benchmark)
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IVW

Our federated 
method for IPW-
MLE assuming a 

restricted model on 
the combined data 

Our federated 
method for IPW-
MLE assuming an 

unrestricted model on 
the combined data Unrestricted

benchmark



Procedure of  sampling and federation
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Applying the selected method to combine two datasets 
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• The federated estimate from the unrestricted federated method lies 
between the estimates on MarketScan and Optum
• Based on information from both datasets, we find that taking alpha-

blockers reduces the log odds of  the adverse outcome



Conclusion
1. Federated methods that only use summary-level information from 

heterogeneous datasets

• Depend on the stability and model specification conditions of  propensity and 
outcome models

• Two main categories: IPW-MLE and AIPW; one supplementary category: MLE

2. Asymptotic guarantees for federated point and variance estimators

• Doubly robust, efficient, and asymptotic normal

3. A procedure to select federated methods on empirical datasets

3/2/22 Federated Causal Inference in Heterogeneous Observational Data



Supplementary slides
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Ideal: an RCT
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All subjects in database

45+ yr old & male

Inpatient diagnosis of  PNA/ARD

1 yr prior medical history

prior use ⍺-blockers no prior ⍺-blockers 

ventilated ventilated

died died

Inclusion / Exclusion 
Criteria



Ideal: an RCT
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All subjects in database

45+ yr old & male

Inpatient diagnosis of  PNA/ARD

1 yr prior medical history

prior use ⍺-blockers no prior ⍺-blockers 

ventilated ventilated

died died

Treatment Control



Ideal: an RCT
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All subjects in database

45+ yr old & male

Inpatient diagnosis of  PNA/ARD

1 yr prior medical history

prior use ⍺-blockers no prior ⍺-blockers 

ventilated ventilated

died died

Outcomes



Retrospective analysis
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Jan 1, 2015: First ARDS/Pneumonia Inpatient Admission OccursJan 1, 2014

In the past year, has the patient:
1. Taken a 180+ day supply of  𝛼-blockers?
2. Presented with comorbidities (e.g. heart failure, PTSD, etc.)?
3. Been admitted to the hospital as an inpatient?



Retrospective analysis
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Jan 1, 2015: First ARDS/Pneumonia Inpatient Admission OccursJan 1, 2014

During inpatient admission:
1. Does the patient get ventilated?
2. Does the patient die?



Within-group prevalence of  adverse outcomes
• Within-group prevalence of  adverse outcomes (ventilation, ventilation 

followed by death) is lower for the treated group on both datasets

ØBut we need to account for confounding
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MarketScan Optum



Imbalance between the treated and control groups
• Covariates are imbalanced
• Prostate problems tend to 

worsen with age
• Thus, treated patients are 

generally older

3/2/22 Federated Causal Inference in Heterogeneous Observational Data

MarketScan



Solution: Combine heterogeneous patient data?
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PROPRIETARY 
PATIENT DATA

PROPRIETARY 
PATIENT DATA

Ideal: Combine patient-level information on 
MarketScan and Optum

● More data for minority patient groups
● Increases statistical power for treatment effect 

estimation



Problem: Not allowed!
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PROPRIETARY 
PATIENT DATA

PROPRIETARY 
PATIENT DATA

● Legal issues (data use agreements, data 
owner competition)

● Ethical issues (patient privacy)



Solution: Combine summary statistics
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𝚺

𝚺

This paper proposes categories of  federated 
methods

Method: On each dataset individually, calculate 
carefully constructed statistics related to both 
treatment assignment and patient outcomes

Objective: Obtain point and variance estimates 
that are asymptotically the same as those from the 
combined individual-level data  



Asymptotic distribution of  IPW-MLE continued
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Lemma 1. Suppose the regularity conditions for the parametric propensity and outcome models hold. As the 
sample size 𝑛 → ∞, the IPW-MLE 8𝛽 is consistent and asymptotically normal   

𝑛"/$ ⋅ 8𝛽 − 𝛽% →
&
𝑁(0, 𝑉')

where 𝑉' = 𝐴',)*" ⋅ 𝐷',) −𝑀',),+ ⋅ 𝐴',)*" ,
𝑀',),+ = 𝐶',),+," ⋅ 𝑉+ ⋅ 𝐶',),+,$, + 𝐶',),+,$ ⋅ 𝑉+ ⋅ 𝐶',),+,", − 𝐶',),+,$ ⋅ 𝑉+ ⋅ 𝐶',),+,$, and 𝑉+ = 𝐴+*" ⋅ 𝐵+ ⋅ 𝐴+*"



Research question
• Question: Does taking alpha-blockers reduce the probability of  the adverse 

outcome (ventilation (followed by death))? 
• We seek to use both datasets (MarketScan and Optum) to answer this question
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