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QTM 347 Machine Learning

Lecture 2: Bias-variance decomposition



Lecture plan
• Bias-variance decomposition for regression problems (MSE)
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Training/Test data and training/test MSE
• Training data: the data, 𝑋!, 𝑌! , 𝑋", 𝑌" , ⋯ , 𝑋# , 𝑌# , that are used 

to fit 𝑓

• Training MSE: MSE = !
#
∑$%!# (𝑌$ − -𝑓(𝑋$))"

• Test data: the data, (𝑋!& , 𝑌!&), (𝑋"& , 𝑌"&),…, (𝑋'& , 𝑌'& ), that are previous 
unseen and not used to fit 𝑓

• Test MSE: MSE = !
'
∑$%!' (𝑌$& − -𝑓(𝑋$&))"

• We care test MSE more than training MSE
• However, a low training MSE does not imply a low test MSE…
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MSE varies with model flexibility
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Test MSE = 0.533 Test MSE = 0.518 Test MSE = 0.564

Training MSE = 0.354Training MSE = 0.439 Training MSE = 0.425
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From now on, let us study why MSE varies with model flexibility 
• Suppose the true regression function is 𝑓 𝑥 = 𝑥" (𝑥 is a scalar)

• We consider training the following models to learn this function
• A constant function: !𝑓/ 𝑥 = !𝛽/
• A linear function: !𝑓0 𝑥 = !𝛽/ + 𝑥 ⋅ !𝛽0
• A quadratic function: !𝑓1 𝑥 = !𝛽/ + 𝑥 ⋅ !𝛽0 + 𝑥1 ⋅ !𝛽1
• A ninth degree polynomial function: !𝑓2 𝑥 = !𝛽/ + 𝑥 ⋅ !𝛽0 +⋯+ 𝑥2 ⋅ !𝛽2

• The model is more flexible if  the polynomial degree is larger
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Four fitted models

• Zero predictor model fits poorly
• Linear model is reasonable
• Quadratic model fits much better 
• Ninth degree model seems rather wild
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If  we fit models on three additional datasets
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• In general, the fitted model depends on the training data

• The zero predictor !𝑓/ 𝑥  slightly varies, but the ninth-degree polynomial varies !𝑓2 𝑥  quite a bit
• We call this the variance of  a model: the variance of  !𝑓/ 𝑥  is smaller than the variance of  !𝑓2 𝑥  



Suppose we are interested in predicting 𝑓 𝑥!  

• Test point: 𝑥/ = 0.9
• The truth, 𝑓 𝑥/ = 0.9 = 𝑥/1 = 0.81
• We have 250 datasets
• For each dataset, we fit polynomials with 

degree 0, 1, 2, 9, and plot !𝑓(𝑥/ = 0.9)
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bias

Proportional to variance

Average prediction across 250 3𝑓(𝑥! = 0.9)



Suppose we are interested in predicting 𝑓 𝑥!  
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bias

Proportional to variance

Average prediction across 250 3𝑓(𝑥! = 0.9)

• The squared bias
 !𝑓1 𝑥 ≈ !𝑓2 𝑥 < !𝑓0 𝑥 < !𝑓/ 𝑥
ØIncreasing degree from 2	to 9 does not 

further reduce bias

• Variance
 !𝑓/ 𝑥 < !𝑓0 𝑥 < !𝑓1 𝑥 < !𝑓2 𝑥
ØIncreasing degree increases variance



Combining bias and variance
• MSE depends on both bias and variance

• MSE can be decomposed into variance plus the square of  bias
• Next we show how…
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Let us analyze MSE
• Suppose the true function is 𝑓
• The response follows 𝑌 = 𝑓 𝑋 + 𝜀, with E 𝜀 = 0
• For notation simplicity, let 𝒟 = {(𝑋!, 𝑌!), (𝑋", 𝑌"),⋯ , (𝑋# , 𝑌#)} be the 

training data
• -𝑓 depends on 𝒟
• If  we change the training data 𝒟, we get a different estimate !𝑓

• Let 𝑥( be a fixed test point. The MSE at 𝑥( can be decomposed as

MSE 𝑥! = 𝐸"|$,𝒟 𝑌 − 1𝑓 𝑋
'
∣ 𝑋 = 𝑥! = 𝐸𝒟 𝑓 𝑥! − 1𝑓 𝑥!

'
+ 𝑉"|$ 𝑌 ∣ 𝑋 = 𝑥!
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Expected value over 𝒟 and 𝑌|𝑋 Reducible error Irreducible error



Decomposition of  MSE
• The MSE at 𝑥( can be decomposed as

MSE 𝑥! = 𝐸"|$,𝒟 𝑌 − 1𝑓 𝑋
'
∣ 𝑋 = 𝑥! = 𝐸𝒟 𝑓 𝑥! − 1𝑓 𝑥!

'
+ 𝑉"|$ 𝑌 ∣ 𝑋 = 𝑥!

• MSE at 𝑥/ is also called the expected prediction error for a random 𝑌 given a 
fixed 𝑋 = 𝑥/ and a random !𝑓

• Two sources of  randomness:

• Given that 𝑋 = 𝑥!, 𝑌 is random because 𝑌 = 𝑓 𝑋 + 𝜀 and 𝜀 is random

• 1𝑓 is random because it depends on (randomly sampled) training data 𝒟
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Irreducible error
• The MSE at 𝑥( can be decomposed as

MSE 𝑥! = 𝐸"|$,𝒟 𝑌 − 1𝑓 𝑋
'
∣ 𝑋 = 𝑥! = 𝐸𝒟 𝑓 𝑥! − 1𝑓 𝑥!

'
+ 𝑉"|$ 𝑌 ∣ 𝑋 = 𝑥!

• Irreducible error: the variance of  𝑌 given that 𝑋 = 𝑥/

• If  𝑌 = 𝑓 𝑋 + 𝜀 with E 𝜀 = 0 and V 𝜀 = 𝜎(' , then 𝑉"|$ 𝑌 ∣ 𝑋 = 𝑥! = 𝜎('

• Irreducible error can not be reduced for any 1𝑓 
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Reducible error
• The MSE at 𝑥( can be decomposed as

MSE 𝑥! = 𝐸"|$,𝒟 𝑌 − 1𝑓 𝑋
'
∣ 𝑋 = 𝑥! = 𝐸𝒟 𝑓 𝑥! − 1𝑓 𝑥!

'
+ 𝑉"|$ 𝑌 ∣ 𝑋 = 𝑥!

• Reducible error: the expected squared error by using !𝑓 𝑥/  to estimate 𝑓 𝑥/

• The only thing that is random is 𝒟, the training data used to obtain 1𝑓 (both 𝑓 and 𝑥! are 
fixed)

• Reducible error can be reduced by using a better 1𝑓 
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Bias-variance decomposition of  reducible error
• Reducible error can be decomposed as the squared bias and variance

𝐸𝒟 𝑓 𝑥! − 1𝑓 𝑥!
'
= 𝑓 𝑥! − 𝐸𝒟[ 1𝑓(𝑥!)]

'
+ 𝐸𝒟 1𝑓 𝑥! − 𝐸𝒟[ 1𝑓(𝑥!)]

'

• Take home exercise: Prove this decomposition
• Hint: Use the property

 𝐸𝒟 𝑓 𝑥! − 3𝑓 𝑥!
#
= 𝐸𝒟 𝑓 𝑥! − 𝐸𝒟 3𝑓 𝑥! + 𝐸𝒟[ 3𝑓(𝑥!)] − 3𝑓 𝑥!

#

𝐸𝒟 𝐴 + 𝐵 ' = 𝐴' + 2𝐴𝐸𝒟 𝐵 + 𝐸𝒟 𝐵' = 𝐴' + 𝐸𝒟 𝐵'
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bias#( 3𝑓 𝑥! ) var( 3𝑓 𝑥! )

𝐵𝐴

= 0 (𝐴 is nonrandom and 𝐸𝒟 𝐴# = 𝐴#)



Recall our toy example

1/28/25

bias

Proportional to variance



Summing up the decomposition
• The MSE at 𝑥( can be decomposed as

MSE 𝑥! = bias' 1𝑓 𝑥! + var 1𝑓 𝑥! + 𝜎('
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Reducible error Irreducible error



Visualization of  bias-variance decomposition 
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𝑓 is complicated, 
low SNR

Irreducible 
error

𝑌 = 𝑓 𝑋 + 𝜀	
Var 𝜀 = 1

SNR: Signal-to-noise ratio 
Signal measured by 𝑓 𝑋
Noise measured by  𝜀

𝑓 is simple, 
low SNR

𝑓 is complicated, 
high SNR


