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Lecture 2: Bias-variance decomposition
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Lecture plan

* Bias-variance decomposition for regression problems (MSE)




Training/Test data and training/test MSE

* Training data: the data, (X1,Y;), (X,,Y5), -, (X;,, Yy,), that are used
to fit f

* Training MSE: MSE = ~ Y7L, (¥; — f(X}))?
* Test data: the data, (X{,Y7), (X5,Y,),..., (Xm, Yim), that are previous

unseen and not used to fit f
+ Test MSE: MSE = — 37 (¥/ — f(X}))?
* We care test MSE more than training MSE
* However, a low training MSE does not imply a low test MSE. ..




MSE varies with model flexibility
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From now on, let us study why MSE wvaries with model flexibility

o Suppose the #ue regression function is f(x) = x* (x is a scalar)

* We consider #raining the following models to learn this function
* A constant function: fo (x) = ,@0
* A linear function: fl (x) = ,30 +x -
* A quadratic function: fz (x) = ﬁo + x - ,gl + x? - Bz
* A ninth degree polynomial function: fg(x) = ,BO + x - ,él 4t x7 ,gg

* The model is wore flexible it the polynonzial degree is larger
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Four fitted models

Four Polynomial Models fit to a Simulated Dataset

s )); : ;O:YEXv g
y ~ poly(X, .
o | 27 yzpobxo * Zero predictor model fits poorly
o ] — truth
* [Linear model is reasonable
> * Quadratic model fits much better

o * Ninth degree model seems rather wild
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If we fit models on three additional datasets

* In general, the fitted model depends on the training data
* The zero predictor f 0(x) slightly varies, but the ninth-degree polynomial varies f 9(x) quite a bit

* We call this the variance of a model: the variance of f o(x) is smaller than the variance of f 9(x)

Simulated Dataset 1 Simulated Dataset 2 Simulated Dataset 3
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Suppose we are interested in predicting f (xq)

Simulated Predictions for Polynomial Models

* Test point: xo = 0.9
e The truth, f(xq = 0.9) = x5 = 0.81

* We have 250 datasets S —

* For each dataset, we fit polynomials with S pias
degree 0,1, 2,9, and plot f(xg = 0.9) R .
. } Proportional to variance
, l ;
Average prediction across 250 f(x, = 0.9) Polynomial Degree
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Suppose we are interested in predicting f (xg)

Simulated Predictions for Polynomial Models

* The squared bias

fo(x) = fo(x) < f1(x) < fo(x)
>Increasing degree from 2 to 9 does not
further reduce bias

§ o _ bias<
* Variance
f 0 (X ) < f 1 (X ) < f 2 (X ) < f 9 (X ) ° Proportional to variance
>Increasing degree increases variance o

0 1 2

Average prediction across 250 f(x, = 0.9) Polynomial Degree
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Combining bias and variance

* MSE depends on both bias and variance
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* MSE can be decomposed into variance plus the square of bias

e Next we show how...
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Let us analyze MSE

* Suppose the true function is f

* The response follows Y = f(X) + €, with E[g] = 0

* For notation simplicity, let D = {(X;,Y1), (X5, Y2), -+, (X, ¥3,) } be the
training data

. f depends on D

* If we change the training data D, we get a different estimate f

* Let X be a fixed test point. The MSE at Xy can be decomposed as

MSE(x) = Ey|x,p [(Y — f(X))Z | X = xo] = Ep [(f(xo) - f(xo))2] + Vyix[Y 1 X = x]
— N . y . . y

Expected value over D and Y |X Reducible error Irreducible error




Decomposition ot MSE

* The MSE at xy can be decomposed as

MSE(x¢) = Ey|xp [(Y — f(X))Z | X = xo] = Ep [(f(xo) — f(xo))2] + VyixlY 1 X = xo]
— N . y N . y

Expected value over Y|X and D Reducible error Irreducible error

* MSE at X is also called the expected prediction error for a random Y given a
fixed X = xp and a random f

* 'Two sources of randommness:
* Given that X = xg, Y is random because Y = f(X) + € and € is random

e f is random because it depends on (randomly sampled) training data D
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Irreducible error

* The MSE at xy can be decomposed as

MSE(x¢) = Ey|xp [(Y — f(X))Z | X = xo] = Ep [(f(xo) — f(xo))2] + VyixlY 1 X = xo]
— N . y N . y

Expected value over Y|X and D Reducible error Irreducible error

* Irreducible error: the variance of Y given that X = x|
* If Y = f(X) + & with E[e] = 0 and V[¢] = 0 , then Vyx[Y | X = x¢] = 07

* Irreducible error can not be reduced for any f
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Reducible error

* The MSE at xy can be decomposed as

MSE(x¢) = Ey|xp [(Y — f(X))Z | X = xo] = Ep [(f(xo) — f(xo))2] + VyixlY 1 X = xo]
— N . y N . y

Expected value over Y|X and D Reducible error Irreducible error

* Reducible error: the expected squared error by using f (xg) to estimate f(xg)

* The only thing that is random is D, the training data used to obtain f (both f and xg ate
fixed)

* Reducible error can be reduced by using a better f




Bias-variance decomposition of reducible error

* Reducible error can be decomposed as the sqguared bias and variance

Ep [(f(xo) — f(xo))zl = (f(xo) — ED[f(xo)])2 + Ep [(f(xo) — ED[f(xo)])zl

bias?(f(x,)) var(f (x,))

* Take home exercise: Prove this decomposition
* Hint: Use the property
A 3 A A A 2
By | (FO0) = Fx0)) | = Bn |(F o) = ol )] + B[P Gl = F(x)) |

Y

A B
Ep[(A + B)?] = A% + 2AEp[B] + Ep[B?] = A? + Ep[B?]
W_J
=0 (A is nonrandom and Ep[A?] = A%)
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Recall our toy example

Simulated Predictions for Polynomial Models
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Summing up the decomposition

* The MSE at xy can be decomposed as

MSE(x,) = bias? (f(xo)) + var (f(xo)) + g2
N . SR

Reducible error Irreducible error




Visualization ot bias-variance decomposition

Y=f(X)+¢ f is complicated, f is simple, f is complicated,
Var(e) =1 low SNR low SNR high SNR

25
25

= MSE

SNR: Signal-to-noise ratio
Signal measured by f(X)

Noise measured by &

2.0

0
-

Q
-

Irreducible

0.5

0.0
|
0
|

o
Crror S

2 5 10 20 2 5 10 20 2 5 10 20

Flexibility Flexibility Flexibility

1/28/25




