QTM 347: Machine Learning

lLecture 1: Preliminaries in machine learning

Ruoxuan Xiong




Lecture plan

* Preliminaries in machine learning
* Parametric and nonparametric methods
* Training/test data and training/test MSE




Supervised and unsupervised machine learning

* Supervised machine learning (main focus of this course)
* Data: (X,11), (X3, Y3), -+, (X, Vi)
* X;: predictors
* Y;: response
* Task: Fit a model that relates response to predictors

* E.g, linear regression or logistic regression model from your regression analysis class

* You will learn many more in this course

* Unsupervised machine learning
* Data: Xl) Xz, e XTL

* Task: Understand the relationships between variables/observations




Supervised machine learning

* INlustrative example: Prediction of housing values in suburbs of Boston

* Training dataset: gtven a training dataset that contains n samples

(X1; Yl)) (Xz, YZ): B (Xn, Yn)

* X; 1s a feature vector

* Y 1s a label

* Supervised machine learning finds a function f that maps X to Y
* Y = f(X) + €, where € has mean 0
* f can be quite general, but is unknown
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Supervised machine learning: How do we estimate f?

* Supervised machine learning finds a function f that maps X to Y

* We may first look at the scatterplot for the exploratory analysis
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Supervised machine learning: How do we estimate f?

* Supervised machine learning finds a function f that maps X to Y

* We may first look at the scatterplot for the exploratory analysis
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Parametric methods

* We assume that f takes a specific form. For example,
e Y = IBO + X - ﬁl + &
°Y=180+X‘ﬁ1+X2'ﬁ2+8

* We use the training data, (X1,Y;), (X5, Y,), -, (X, Yy, to fit the parameters




* From the scatterplot, which f should we choose?

A more complicated case...
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Nonparametric methods

* We don’t make any assumptions on the form of f, but we restrict how
“rough” the function can be

* For example, k-nearest neighbors (KINN)
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Parametric vs nonparametric methods

* Parametric methods are often simpler to interpret, but strongly rely on
assumptions and can be less flexible to capture complex data patterns

* Nonparametric methods rely on fewer assumptions, are flexible and
suitable for large datasets
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In practice, which model we should use?

* Linear model, quadratic model, nonparametric model, or some other model?
* We need an evaluation metric...

* From the regression analysis class, we could use R* (goodness of fit)
« D2 — 1 _ Yi(Yi=¥;)?
=130
o Y; is the fitted ¥; and Y = %27{;1 Y;

* In linear regression, ¥; = By + X; * f1

e For a more general fitted function f (e.g., quadratic), ¥; = f(X;)

* Interpretation of R*: Fraction of the variance of Y; captured by f (X;). The larger the R?,
the better Y; fits Y;

* Quiz: Can R? be less than zero? Can R? be larger than one?




Example of R?

Simulated Dataset 1 Simulated Dataset 1 Simulated Dataset 1 Simulated Dataset 1 Simulated Dataset 1
PSR VX = = y~poly(x,2) — k=5 — k=15 — k=25
o~ ~ - ~ - ~ o -
- ‘ - P o \ . -~
i T sin ™ & / S~
i i Vi \ . f/ i J
> % O | I, S . -7 > /'f\ : A > A A JN\/N\/ > S is—lig \/_/\V/J
O it T o A T o - \//\ o - \/ o - B O
7 7 7 7 7
T T T T T T T T T T T T T T T T T T T T T T T T | T T T
00 02 0.4 06 08 10 00 02 0.4 0.6 08 10 0.0 0.2 0.4 06 08 1.0 00 0.2 0.4 06 0.8 10 00 0.2 0.4 06 038
X X X X X

R* =0.138 R?* = 0.166 R%* = 0.305 R? = 0.191 R? = 0.158

1/21/25




Mean-squared error (MSE)

* MSE and RMSE are commonly used in machine learning
* MSE ==~ 37 (Y; — f(X))?

* MSE =0
* If £(X;) is very close to Y; for all i, then MSE would be small

(V.—T )2
_ Z;l((l;l. _1;‘))2 1s the standardized version of MSE

* R* =1

* Root Mean-Squared Error (RMSE) is VMSE
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MSE., RMSE and R?

* Given the training data,(X;,Y;), (X5, Y,), -, (X,,, Yy), there is a one-to-
one mapping between MSE, RMSE and R?

e When is each metric used?

* MSE: (a) used in model training because it 1s mathematically simpler and
differentiable; (b) used in theoretical analysis

* RMSE: Used in performance reporting because it reflects error in
original data scale

* R%: A scale-independent metric, used when audience is familiar with
“percentage of variance explained”
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One-to-one mapping between MSE, RMSE and R*
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Scaling of MSE, RMSE and R 2

If we multiply x; and y; by 2

5 JEm YR v-;‘““’,
MSE = 0.439 MSE = 1.756
RMSE = 0.663 RMSE = 1.325
R? =0.138 R? =0.138
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Which model to use for prediction?

* Suppose we have m new units
* Their predictors are X7, X5, =+, Xm
* We want to predict the outcome of these m units
* Quiz: Which model should we use? Shall we choose the one with minimum MSE?
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R* =0.138 R?* = 0.166 R? = 0.305 R?* =0.191 R? = 0.158
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* Suppose we have m new units

* Their predictors are X1, X5, =+, X,

* The fitted outcomes are Y7, Y5, -+, Yoo,

i

Which model to use for prediction?

* Suppose we are clairvoyants, and know the true outcome Y7, Y,, «++, Yy,

* We can calculate MSE = %Z?ﬁl(yx — f(Xl’))z
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A low training MSE does not imply a low test MSE. ..

* This 1s the main challenge in machine learning
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MSE varies with model flexibility
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